
N Task: UR20
CDRL: 01000

N UR2O--ProcesslEnvironmentx

Ada/Xt. Architecture:
Design Report ~ ~ fFCp

Informal Technical Data I? ,LECp

Sofwar Tehoog for Aaptable Reliable Sserluj

STARS-RO-Ol 1000/00 1/00
25 January 1990

'NO 14
EC~99K'

Form Approved

REPORT DOCUMENTATION PAGE OM Aove70o018

P o- ,eocn!' Dur~ ; ,OT !' :D'ec.=o" of niOrrait=oe ' sti^ated to average : houfcer esowrse. nciru t e time fOr reviewing instrutions. searcr;rc es. tst- oatu $oe .c
ga tner anc maitaf M g the cat& needeI. ane comaitum anc revtoeng thie collection of nmt ionh 5ena cOmeTs ,egarding thSe b.,rcn elimate or an. :.ter a Oefol tI.N

oIJnev -n"ormatiCn. ,nc-uoing suggestiOn$ for reducing tis ourcem tO Washington MeaCauartert Services. Directorate for nformation Odefatiown and Retons. 21S Je ferson
&! % na. Su,te 2C4 Arhngten VA 2202-4302. Snc tc the O".Ce 13f Manaaern. &no Buage' Pge.*org feduCttOn Protect (0704-01"). Washinalon. DC 2^503

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

25 January 1990 Final

4. TITLE AND SUBTITLE S. FUNDING NUMBERS

Ada/Xt Architecture: Design Report
STARS Contract

6.AUTHOR(S)_ Ft9628-88-D-0031
6. AUTHOR(S)

Kurt Wallnau

7. PERFORMING ORGANIZATION NAME(S) AND ADORESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

Unisys Corporation
12010 Sunrise Valley Drive GR-7670-1107(NP)
Reston, VA 22091

9. SPONSORING,'MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORINGMONITORING
AGENCY REPORT NUMBER

Department of the Air Force
Headquarters, Electronic Systems Division (AFSC)
Hanscom AFB, MA 01731-5000 01000

11. SUPPLEMENTARY NOTES
This report describes the design of the Process/Environment Integration
Ada/XT Toolkit, SunOS Implementation

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release;
distribution is unlimited

13. ABSTRACT (Maximum 200 words)

This report provides a detailed description of the Ada/Xt toolkit
architecture. The purpose of this report is to describe the Ada/Xt
architecture in terms of system-independent package specifications,
and to describe the analysis which contributed to major design decisions.
The emphasis on system-independent package specifications rather than
language independent specifications derives from recognition that the C
language interfaces defined in the X Toolkit (Xt) Intrinsics definition
are nearly sufficiently language independent -- for languages in the Algol
tradition (including Ada). The Ada toolkit design verifies this claim,
since there is a very close syntactic mapping of types and interfaces from
the Ada specification to the C specification. . /

14. SUBJECT TERMS 15. NUMBER OF PAGES

X Window System 87
Ada/Xt Design 16. PRICE CODE
Widgets

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

Onclassified Unclassified Unclassified SAR

25 January 1990 STARS-RC-01000/001/00

PREFACE

This document was produced by Unisys Defense Systems in support of the STARS
Prime contract under the Process Environment Integration task (UR20). This
document "Ada Xt Architecture: Design Report", type A005 (Informal Technical
Data) is provided as additional documentation for CDRL 01000, type A014 (Ada
Package Specification/Source Code) which has is an electronic delivery to the
STARS repository.

This document and source code were produced by Unisys Defense Systems at the
Valley Forge Research facility in Paoli, PA and have been reviewed and approved
by the following Unisys personnel:

Prepared by: Kurt Wallnai
Unisys Corporation

Reviewed by: Teri F. Payton, System Architect

Appr:Hans W. Pozer, Program Manager

kccesl on For
F T

S -1 C

4 1 1 !

,

i (

TASK: UR20
CDRL: 01000

S STARS-RC-01000/O01/O0

Ada/Xt Architecture: Design Report

fcr the

SOFTWARE TECHNOLOGY for ADAPTABLE, RELIABLE SYSTEMS
(STARS)

Contract No. F19628-88-D-0031
Delivery Order 0002

Informal Technical Data (AO05)

25 January 1990

m Publication No. GR-7670-1107 (NP)

Prepared for:
Electronic Systems Division

Air Force Systems Command, USAF
Hanscom AFB, MA 01731-5000

Prepared by:
Unisys Defense Systems

12010 Sunrise Valley Drive
Reston, VA 22091

Yist ibut~n lisited lo A

L.S. Godverment and U.S. Gove pment
'C ntractors niy 9S Aminidtr~ive (5Javwiryd9i

TASK: UR20
CDRL: 01000

STARS-RC-01000/0O1/O0

Ada/Xt Architecture: Design Report

for the

SOFTWARE TECHNOLOGY for ADAPTABLE, RELIABLE SYSTEMS
(STARS)

Contract No. F19628-88-D-0031
Delivery Order 0002

Informal Technical Data (AO05)

25 January 1990

Publication No. GR-7670-1107 (NP)

Prepared for:
Electronic Systems Division

Air Force Systems Command, USAF
Hanscom AFB, MA 01731-5000

Prepared by:
Unisys Defense Systems

12010 Sunrise Valley Drive
Reston, VA 22091

25 January 1990 STARS-RC-0J1000/001/00

Ada/Xt Architecture: Design Report
A005

UR2O-User Interface Subtask

Unisys Defense Systems, E&ISG
Valley Forge Operations

25 January 1990 STARS-RC-O1000/001/00

CONTENTS 2

S Contents

1 Introduction 4

2 Overview of the X Window System 4
2.1 X and Industry Standardized API 7
2.2 X Toolkits and the MIT X Toolkit "Xt" 8
2.3 Why an Ada Implementation of Xt? 9

3 Design Approach 10
3.1 Functional Specifications and Re-Engineering 11
3.2 Object-Orientation in Ada/Xt 12
3.3 Simulating Subprogram Types in Ada 13

3.3.1 Task Types and Unchecked Conversion 13
3.3.2 Ada Generics 14
3.3.3 Cascading Generics and Case Statement Simulation 17
3.3.4 System Dependent Programming 20

3.4 Inheritance and Polymorphism in Ada/Xt 22
3.4.1 Pseudo-Types and Compiled Data Structures 23
3.4.2 Packaging Widget Type Definitions 25
3.4.3 Subprogram and Resource Inheritance 25

4 The Ada/Xt Design 27
4.1 Widgets 32

4.1.1 Core Widgets 32
4.1.2 Composite Widgets 34
4.1.3 Constraint Widgets 36
4.1.4 Widget Class and Superclass Look Up 37

4.2 Widget Instantiation 38
4.2.1 Toolkit Initialization 38
4.2.2 Loading the Resource Database 39

4.2.3 Parsing the Command Line 39
4.2.4 Creating Widgets 39

4.3 Composite Widget Management 40

4.3.1 Procedure Types in Composite Widgets 41
4.4 Shell Widgets 41

4.5 Pop-Up Widgets 55
4.6 Geometry Management 57
4.7 Event Management 59
4.8 CaLlbacks 61

25 January 1990 STARS-RC-01000/001/00

LIST OF FIGURES 3

4.9 Resource Management 63
4.9.1 Interface to Resources 63
4..4.2 Representation of Resource Lists 65
4.9.3 Resource Management Package Specification 66

4.10 Translation Management 68
4.11 Utility Functions 70

5 Appendix A: Case-Statement Procedure Types 74

6 Appendix B: System-Dependent Procedure Types 77

7 Appendix C: Simple Widget Definition 81

List of Figures

1 NIST User Interface Reference Model 6
2 Generic Widget Creation Specification 14
3 Generic Widget Creation Instantiation 15
4 Generic Superclass-Subclass Chaining 16
5 Generic Superclass-Subclass Instantiation 16
6 Procedure Types - Generics Generation 18
7 Procedure Types - Sample Usage 19
8 Procedure Types - System Dependent 21
9 Ada/Xt Widet Type Model 24
10 Widget Types - Ada/Xt Packaging Convention 26
11 UR20-UI Ada/Xt Packaging Implementation 31

1 INTRODUCTION 4

. 1 Introduction

This report provides a detailed description of the Ada/Xt toolkit architecture. The purpose
of this report is to describe the Ada/Xt architecture in terms of system-independent package
specifications, and to describe the analysis which contributed to major design decisions. This
report is part I of a two part Ada/Xt design description; part 2 consists of the compilable
Ada package specifications of the UR-20 Ada/Xt implementation which conforms to the
system-independent specifications outline in section 4 of this report.

The emphasis on system-independent package specifications rather than language inde-
pendent specifications derives from recognition that the C language interfaces defined in
the X Toolkit (Xt) Intrinsics definition [3] is nearly sufficiently language independent - for
languages in the Algol tradition (including Ada). The Ada toolkit design verifies this claim,
since there is a very close syntactic mapping of types and interfaces from the Ada specifica-
tion to the C specification.

The difficult problems addressed by the UR20-UI design effort concerned the development
of object-oriented toolkit features in Ada. This area of toolkit design exposed most of
the language dependencies embedded in the C definition of Xt. A substantial part of this
report discusses the effective use of Ada to provide object-oriented features (e.g., inheritance,
procedure types) without unduely impacting toolkit performance and system independence,
and without relying on automatic program generation techniques.

Section 2 of this report provides a high-level description of the MIT X Window System,
including rationale for implementing a toolkit in Ada. Section 3 discusses the UR20-UI design
goals, approach, and a detailed analysis of the key design decisions made concerning the im-
plementation of object-oriented toolkit features. Section 4 provides the system-independent
toolkit specification. The organization of section 4 parallels exactly the MIT X Toolkit In-
trinsics docwi~entat.,,a'. [31 Indeed, most operaticns defined in section 4 are not documented

in this report; instead, the MIT documentation is referenced. This demonstration of toolkit

similarity is an important result of the UR20-UI approach, and should facilitate MIT X

Consortium acceptance of the STARS Ada/Xt toolkit for eventual Consortium maintenance

and distribution.

2 Overview of the X Window System

This section of the report provides a brief description of the X Window System, and intro-

duces and defines terminology used throughout this report. A more complete description of

X can be found in [6].
X is a network-based windowing system. The National Institute for Standards and Tech-

nology (NIST) has developed a layered model to describe user interface architectures. This

layered model is depicted in figure 1, and has become a federal information processing stan-

25 January 1990 STARS-RC-O0I00/001/00

2 OVERVIEW OF THE X WINDOW SYSTEM 5

* dard (FIPS) [4]. The lower four layers of this model in effect provide a description of the X
Window System.

The lowest layer in the model, layer 0, is the X protocol. This data-stream protocol for X
is currently undergoing formal standardization efforts in the ANSI X3H3.6 committee. The
protocol defines the manner in which X applications communicate with X servers. Applica-
tions in this sense are sometimes called clienta, although this terminology may be confusing
because the term "client" is also used to describe user's of toolkit widgets (described, below).

The next layer, layer 1, is the programmatic interface to the protocol layer. This set
of interfaces, known collectively s "Xlib", provides the primitive programmatic layer upon
which X applications can make requests of X servers. SAIC, under a STARS Foundations
contract, developed Ada bindings to the C Xlib implementation. This set of bindings can be
characterized as (moderately) "deep" bindings, since a substantial effort was made to map
the C data types to Ada, and do as much Xlib processing in Ada as possible before sending
the actual request to the C implementation.

The Ada/Xlib bindings were not complete, however. Utility functions requiring proce-
dure types as parameters were not implemented, probably because any implementation of
procedure types that would enable C Xlib code to execute Ada subprograms was deemed
to be too system-dependent for STARS. Resource management was also not implemented.
The reason why these interfaces were not mapped in the Ada bindings is not clear, although
it is possible that these interfaces were not officially part of the Xlib layer at the time the
foundations work began.

The next two layers, layers 2 and 3, map to the MIT Toolkit intrinics and widgets
Wlayers, respectively. The Unisys UR20 user interface subtask addresses the development of

an Ada implementation of these two layers - not bindings. These Ads implementations will

make use of the SAIC Xlib bindings, which have been upgraded to revision 3 (X11R3), and

extended to include all of the Xlib resource management functions, as part of the UR20 task.

Layer 2, the subroutine foundation layer, defines a single application portability interface

(API) for manipulating collections of user interface abstractions (called "toolkit" in the

reference model, but called "widgets" or "widget sets" in Xt parlance). This separation

of subroutine interface from user interface abstraction presents interesting programming

paradigm questions to Ada software developers. That is, the intrinsics (layer 2) define a

set of interfaces for manipulating an open-ended set of abstractions. As will be discussed

later in this report, Ada generics are not sufficiently general to support this kind of software

layering.
Layer 3, the toolkit, is essentially a library of reusable, extensible, and composable user

interface abstractions. This "widget" library provides an excellent example of what Unisys

has been describing as tool fragments, here tailored to the fragments of tools which concern

the display of application program data. The ideas of widget reusability, extensibility and

composability are central to the MIT X Toolkit, or "Xt", which draws heavily upon the

concepts of object-oriented programming languages and systems in order to achieve these

25 January 1990 STARS-RC-01000/001/00

2 OVERVIEW OF" THE X WINDOW SYSTEM 6

Layer 6: Application

Layer 5: Dialogue
(UIMS, Window Kgr.)

Layer 4: Presentation
(UMS, Window Mgr.)

Layer 3: Toolkit

Layer 2: Subroutine Foundation

Layer 1: Data Stream Interface

Layer 0: Data Stream Encoding

Figure 1: NIST User Interface Reference Model

25 January 1990 STARS-RC-01000/001/00

2 OVERVIEW OF THE X WINDOW SYSTEM 7

effects. A significant part of this design report addresses the simulation of object-orientation
in Ada without recourse to program generation.

2.1 X and Industry Standardized API

In recent years the industry has recognized the importance of separating the user interface
code and the application code. This separation reduces software development costs by per-
mitting reuse of user interface code and providing consistent behavior (reducing training
costs and reducing errors caused by differences in the user interface behavior). This separa-
tion requires a well defined interface between the application and user interface abstractions,
called au application program interface or API.

In X the interface to the user interface abstractions or widgets consists of functions
(contained in the intrinsics) to access widgets and the data structures within the widgets that
allow applications to customize the user interface. These data structures contain resources
(specifying color, size, fonts, etc.) and lists of application procedures invoked by the intrinsics
upon occurrance of specified events.

Why is the industry demanding a standard API and user interface abstractions? The
demand originates in the user community (especially the U. S. government) and independent
software vendors (ISVs). Users now buy hardware platforms and software from a variety of
vendors and need a consistent user interface ("look and feel" or appearance and behavior)
across platforms and among applications running on a single platform.

ISVs face a demand for their applications on a variety of platforms. The application
changes little from platform to platform, but the user interface may change drastically. The
separation of the user interface from the application is important, so that a port to another
platform requires at most a rewrite of the user interface and not a complete rewrite of
the application. Furthermore, a common API means the application code need not change
when the user interface changes. Portable user interface abstractions like the Xt widgets
mean that an ISV can easily port a user interface from platform to platform, thus reducing
the conversion costs and ensuring a consistent "look and feel" across all platforms, and
consistency among the ISV's product user interfaces.

Industry standards organizations, ANSI X3 and IEEE, are standardizing the lower layers
of the FIPS model. The X protocol (data stream encoding) standards work began two years
ago and should be completed soon by X3H3.6. The toolkit and API standardization work
began in 1989 in the IEEE P1201 committee. P1201 is currently working on a standard for
the widget set. ANSI X3V1 is working on standards for man-machine interfaces. X3V1.9
will develop standards for "look and feel" of user interface abstractions such as menus.

Why has NIST and the standards bodies chosen X? X is the first widely accepted window
system addressing the needs of the networked, bit-mapped graphics workstation environment.

X runs on a wide range of Unix based platforms, Digital VMS and Ultrix machines, IBM
mainframes, Apple Macintosh, PCs and graphics terminals. One reason for its acceptance is

25 January 1990 STARS-RC-01000/001/00

2 OVERVIEW OF THE X WINDOW SYSTEM 8

* that source is available free of licenses or royalties. In addition, interfaces to several languages
exist, C (primarily), C++, Lisp, Ada, and Prolog; however not all implementations support
the Xt toolkit layer.

2.2 X Toolkits and the MIT X Toolkit "Xt"

A number of toolkits evolved from the X Window System. Most of these are based on
the Xt intrinsics. MIT released a sample set of widgets, Athena widgets, with the Xt
Intrinsics, and many applications were and still are being written using Athena widgets.
The Athena widgets were an incomplete set (there is no menu widget; one can be built from
other Athena widgets), and so various companies added widgets to their X based products.
Digital developed XUI, AT&T Xt+, and HP and Sony developed widget sets. In many cases
(XUI and Xt+) the intrinsics were extended. With the demand for a single API and "look
and feel" from users and ISVs, groups like the Open Software Foundation (OSF) moved
toward a single API and widget set. OSF developed Motif by merging XUI and the HP
widget set. There is still not an agreement on a single widget set, but the standards work
will eventually define one.

Most toolkits are based on the MIT Xt Intrinsics, but several are not: Xray [2], Andrew
[5] and XView are well known examples. Xray (or Xrlib) was an early HP toolkit which
added three layers above the Xlib layer:

e Intrinsics - input handling, object interaction and geometry management,

• Field Editors - the basic user interface abstractions such as scrollbas and buttons,

* Dialogs - higher level abstractions such as menus, message boxes and panels.

With the rising popularity of Xt, HP implemented a similar "look and feel" with an Xt

Intrinsics based widget set and use of Xray has declined.
Sun recently announced the release of XView, a toolkit built upon the Xlib layer. The

XView API is compatible with the proprietary SunView API. XView implements the Sun/AT&T

Open Look "look and feel".
The Andfew Toolkit, developed at Carnegie Mellon University (CMU), is a window

system independent, object oriented toolkit. Besides a CMU built window system, the

Andrew Toolkit supports X (X protocol and Xlib). The Andrew Toolkit consists of data

object/view pairs where the data object is the information to be displayed (text in a text

editor, for example) and a view is the user interface abstraction (scroilbars, menus, etc).

One feature of Andrew is the ability to intersperse multiple data objects within a view. This

permits a mixture of text, graphics and animations within a window (e.g. animation and

graphics can occur along with text in the body of an email message). This toolkit has not

been widely accepted beyond CMU.

25 January 1990 STARS-RC-O1000/001/00

2 OVERVIEW OF THE X WINDOW SYSTEM 9

eXt is clearly the dominant toolkit in the-marketplace. What are the features that are
making Xt the de facto standard and soon an official standard? Certainly, its availability
free of licenses and royalties is a contributing factor. Other important attractions are its
extensibility through creation of new widgets, and from its object oriented design and the
ability to easily subclass widgets. Adding new widgets or subclassing does not require
recompilation of the toolkit since the intrinsics do not need to know anything about a
specific widget. The intrinsics are policy free (implies nothing about "look and feel") so that
a vendor or application is free to specify its own "look and feel" by choice of widgets. Xt also
provides the separation of user interface objects from the application code, thus permitting
portability and reuse of the user interface code.

2.3 Why an Ada Implementation of Xt?

Implementing Xt in Ada presents some challenging problems, and is not without some risk.
To achieve a high degree of flexibility and extensibility, Xt made use of language features
which have only tenuous analogs in Ada (e.g., procedure types). Finding the correct Ada
approach to these language dependent features of Xt requires making tradeoffs among: com-
piler independence, operating system independence, and system/hardware independence.
Choosing a suboptimal Ada design/implementation risks industry acceptance of Ada/Xt,
and hence risks emergence of a de facto Ada toolkit API. However, in many cases, no "per-
fect" solution exists. In fact, a significant portion of this report deals with the tradeoffsCamong various competing implementation strategies.

Since a fairly substantial engineering effort must be expended (with some risk) to imple-
ment Xt in Ada, a reasonable question to ask is whether a better cost/benefit ratio would
be obtained by following the Ada/Xlib example and developing an Ada binding to the MIT

X toolkit. There are several reasons why a bindings approach to Xt would not be adequate

in the long-term.
First, there is the issue of widget set extensibility. A significant feature of the Xt model

is the ease with which new widgets can be constructed from old widgets. Indeed, this is

a hallmark of object-oriented programming in general, which attempts to maximize reuse

by factoring abstractions into class hierarchies, facilitating finer-grained reuse than possible

with unstructured collections of monolithic abstractions. However, a set of bindings to the C

implementation of Xt would require that new widgets be programmed in C, and that a fairly

elaborate system-dependent type mapping interface be developed and maintained which

maps Ada application resource types to the underlying C representations for management

by the C toolkit implementation.
Second, beside issues of static inter-language interfaces, there are issues of inter-language

runtime cooperation. The notion of procedure reference is indelible in Xt: a major part of

the toolkit model is that the toolkit will execute application code on behalf of the application

in response to certain events generated by the server. That is, an Xt application program

p

25 January 1990 STARS-RC-OlO0/001/00

3 DESIGN APPROACH 10

* does not have a traditional control structure, but rather specifies what code to execute
under various circumstances: the toolkit in effect executes the application program. As a
consequence, a toolkit binding needs to provide the C implementation with the address of a
subprogram which will execute Ada code (either directly or indirectly). This introduces a
considerable degree of compiler dependence, since the details of parameter passing protocol
and stack frame environments are not specified by the Ada language definition. Although
the UR20 toolkit implementation makes use of procedure addresses, it provides an interface
which will accommodate a "pure Ada" solution should circumstances demand it. An Ada
binding to Xt would not have this luxury.

Finally, there are issues of runtime environment interaction. If a significant number of
Ada applications are to be developed which use the X Window System, issues of conflict
between the Ada runtime system and underlying host operating system must be considered.
For example, conflicts between the Ada runtime enviro-,nent usage of Unix signals to control
task scheduling and C Xlib code must be carefully cc .dered. Some Ada runtime environ-
ments even provide a mechanism to disable runtime environment signal usage during calls
to external language routines. This added complexity and system dependency can only be
adequately resolved if, in the long term, a full Ada implementation of the client interfaces
to X is developed (Xlib and toolkit interfaces). From this perspective, the development of
another Ada binding would be at most a stopgap effort which would have to be redone at a
later date.

3 Design Approach

The UR20 task had two overriding goals to achieve in the Ada toolkit implementation:

* Develop an eminently usable implementation of Xt which fully preserves the features

and advantages of the C implementation.

" Establish that the Ada implementation faithfully implements the MIT toolkit, and

achieve X Consortium acceptance of the Ada implementation as a Consortium "prod-

uct."

The first goal does not strictly require implementing Xt, but rather some toolkit which

provides all of the features that Xt provides. In practice however, it would be unreasonable to

expect to design and implement an entirely new toolkit model (in a nine month performance

period) which can compete with Xt. Instead, this goal had more to do with ensuring that

the resulting implementation of Xt sufficiently preserves the strictures of Ada style and

usage, and was also efficient and compact so as not to overburden applications which require

interactive windowing interfaces. In short, this goal concerns acceptance of Ada/Xt by Ada

software practitioners.

25 January 1990 STARS-RC-O1000/001/00

3 DESIGN APPROACH 11

The second goal requires presentation to the X Consortium of some evidence that the
Ada implementation faithfully implements the MIT X Toolkit. This presented an interesting
question, since the only existing description of what Xt is is a very detailed description of
the C implementation. That is, there is no pre-existing specification of what Xt is beyond
it's implementation. This goal, then, concerns provision of an architectural description of
the Ada implementation which will maximize our chances of attaining acceptance of Ada/Xt
by X Consortium members.

Note: This section of the design report provides an in-depth discussion of
various approaches to implement Xt in Ada. In places, understanding the highly
detailed discussion of advanced Ada programming techniques used in Ada/Xt
requires that the reader has a significant degree of Ada and MIT X Toolkit
competency.

3.1 Functional Specifications and Re-Engineering

The originally stated UR20-UI toolkit design approach was to begin with a study of the MIT
Xt implementation and documentation, and from this study extract and specify a language
independent specification of the MIT X Toolkit. This specification would then be mapped to
some Ada realization. Thus, two products of this design process were envisioned: a language
independent specification, and an Ada language specification, of Xt.

However, this abstract process encountered difficulties early on. It became apparent that
there was very little that was indeed "language independent" in the C documentation. Fur-
ther, we began to suspect that what truly did constitute language independent architectural
constraints would, when specified, provide little or no insight to the task of creating an Ada
implementation. Thus, our premise that a language independent model could be extracted
via a reengineering process seems faulty.

For example, consider the issue of widget subclassing and inheritance. The C imple-
mentation supports subclssing and inheritance via manual type conversions to predefined,

known widget and widget-class data structures, and data structure specification conventions,

respectively. This is a concrete realization of the abstract idea of widget-class hierarchies

with inheritance. The realization of this abstract architectural feature in an object-oriented

language like C++ or CLOS will likely be radically different from the C realization; a

language-independent specification sufficiently general to describe these various implemen-

tations would be vague to the point of being useless as a prescriptive vehicle.
This may appear to be a disappointing result, but there are positive aspects. First,

we concluded that a truly language independent specification is not likely to be of much

use beyond shallow conformance testing. However, the Xt implementation does provide

an approach for implementing an object-oriented system in non-object-oriented languages.

More specifically, we were able to test the assertion made by the author's of Xt that the

intrinsics are language independent for procedural languages.

S

25 January 1990 STARS-RC-01000/00l/00

3 DESIGN APPROACH 12

. We conclude that they are indeed reasonably language independent for procedural lan-
guages in the Algol-Pascal-Modula2-Ada tradition. Further, modulo minor syntactic varia-
tions (e.g., turning C functions with side-effects into Ada procedures), an Ada implementa-
tion of Xt is able to preserve a very direct syntactic mapping of Ada intrinsics to C intrinsics,
and Ada widget programming conventions to C widget programming conventions. This is
indeed an excellent result because it provides in effect what we wanted from the language-
independent specification: some means to justify to the X Consortium that we had imple-
mented the MIT X Toolkit, and not some new variant. Further, this close correspondence
is a compelling argument for tying evolution of the Ada implementation to it's "parent"
C implementation, since the differences are not so great as to make parallel evolution an
unreasonably expensive venture.

Although UR20-UI does not provide a language independent specification for Xt, we do
provide a system-independent Ada specification, suitable as a basis for standardization in
the Ada community. This specification is useful for highlighting where extra implementation
details may be added to support implementation on a particular hardware/operating system
platform.

3.2 Object-Orientation in Ada/Xt

It is not the purpose of this design report to convince the reader of the utility of object-
oriented programming in the development of user interface-intensive systems. This report

* also assumes some level of familiarity with such terms as object class, object instance, and
inheritance. Description of object-oriented concepts are numerous in literature, of which
[1, 7] are just a small (but significant) portion.

Three features of object-oriented languages need to be imulated in Ada before an ad-

equate implementation of Xt can be undertaken. The design of this simulation using Ada

features, rather than through some form of program generation, constituted a significant

portion of the Ada/Xt design process. These three features are:

* subprogram types, i.e., "methods"

e inheritance

9 polymorphism

It is important to note the term simulation. The ideas of runtime type polymorphism

and type inheritance introduces a model of type semantics not implemented by Ada (or C).

Since Ada does not implement the type model required of an object oriented system, this

type model must be simulated. Thus, one way of viewing the toolkit architecture is as a

system of programmatic interfaces and programming conventions to use these interfaces in

order to simulate object-oriented capabilities in a non-objective language.

25 January 1990 STARS-RC-01000/001/00

3 DESIGN APPROACH 13

The remainder of this section describes -how the Ada/Xt architecture simulates subpro-
gram types, inheritance, and polymorphism.

3.3 Simulating Subprogram Types in Ada

This section describes various solutions to the problem of simulating subprogram types in
Ada. It is important to note that the problem being solved is not simply that of referring to
executable code as data. Were that the case, the Ada tasking mechanism would be sufficient
(albeit somewhat an overkill). Instead, the problem is one of referring to subprograms as
types characterized by interface alone, such that two subprograms with the same interface
but that compute distinct functions would be considered subprograms of the same type.

3.3.1 Task Types and Unchecked Conversion

One implementation approach makes use of Ada task types as a foundation for implementing
subprogram types. Unfortunately, task types do not provide for alternative task bodies for
task specifications.

One way around this is to define a task type TO with a task entry Te whose parameter
profile matches the subprogram profile type being implemented. Rendezvous with instances
of TO on entry Te will raise an exception - task type TO is merely used in order to create a
type mark for constructing a data structure containing references to other task types which
share the same syntactic task specification. New task types Tn, Tmn, Tp can be defined

* which have the same syntactic specification as TO, and instances of these new task types
can be type converted (via Ada unchecked.conversion) to instances of type TO. Finally, the
entries of Tn, Tm, and Tp are accessed via rendezvous with these task instances as if they
were instances of TO. Thus, unchecked-conversion is used to achieve distinct task bodies for
the same task specification.

However, this implementation was rejected for two reasons. First, although this technique
worked on several compilers, this use of unchecked conversion is clearly outside the scope
of the intended use of this feature. There is no reason to believe that all compiler vendors

will generate code to perform rendezvous based solely upon the syntactic form of the task

definition. Although we do endorse some level of system-dependent programming for Ada

implementations of the X toolkit, this kind of systems-dependent programming must be

considered dangerous.
A second reason for disqualifying this technique derives from practical constraints im-

posed upon the UR20 approach. That is, UR20 takes as a foundational basis the STARS

Foundations Ada/Xlib bindings. Thus a significant amount of application processing is ac-

tually done by code written in C. However, the use of tasking introduces many potential
conflicts between the Ada runtime environment and the underlying host operating system,

which is accessed directly by the C implementation of Xlib. In particular, Ada runtime en-

25 January 1990 STARS -RC-0 1000/001/00

3 DESIGN APPROACH 14

Ogeneric

tpe~ Son-widgoet is prilvate;
t:ype gon-widgot.class is private;

-- core class procedures needed during widget creation
with procedure class-part.-initialize(wc : widgetclass);
with procedure class.initialize;
with procedure initialize(requesxt, newrequost : widget);
with procedure initializehook(w : widget;

args : argli8t);
-- creates the widget record with proper size
with function ualloc.widget return gen-widget;

package create is
function xtcreat widget(name : string;

vidgot.class.ptr : gen.vidgs..class;
parent : widget;
args : arg.list) return widget;

end create;

Figure 2: Generic Widget Creation Specification

vironment use of Unix signals as a means of task scheduling (e.g., SIGALARM) can conflict
with the smooth execution of C code depending upon Unix interprocess communication.

. 3.3.2 Ada Generics

Another approach to handling procedure types is through the use of Ada generics to pa-
rameterize widget class definitions with the class operations that would be otherwise rep-
resented as procedure type instances embedded in the widget class data structures (these
data structures are described in greater detail later in this report). Although this static
parameterization would not apply to more dynamic uses of procedure types (e.g., callback
resources), generic parameterization of static subprogram types would constitute a signifi-
cant design decision for the Ada/Xt toolkit. We tried this with the procedure types in the
core class record structure. These procedures handle initializations, setting and retrieving
resource values, resizing, exposures, etc. We thought certain functional areas, such as widget
creation, could be defined by generics and instantiated with the needed functions defined in
the core class. To minimize the size of the generics we attempted to write the generics as a
thin generic interface which references underlying, non-generic widget creation code.

The code fragment in figure 2 is the generic specification for widget creation code. The
code fragment in figure 3 is an instantiation of the generic specification for label widget
creation.

Some of the core class procedure types were only invoked within superclass to subclass
chains and could be implemented as generics parameterized by the core class function and

25 January 1990 STARS-RC-01000/001/00

3 DESIGN APPROACH 15

. package label is
package labolcreate is new create(label-widget,

label.widgot.-class.
class.part..init,
class-initialize,
init,
init_.hook,
malloc.labol-widget);

end label;

Figure 3: Generic Widget Creation Instantiation

its superclass instantiation of the same chaining generic. The code fragment in figure 4 is
the superclass to subclass chaining generic for the clasa.part-initialize function specified in
the core class of every widget class.

Finally, The code fragment in figure 5 instantiates the cla..part-init superclass-to-
subclass chain for the label widget. Note, the label widget does not execute any code for
class part initialization and a dummy procedure (with empty body) is used to instantiate
the generic.

Although we demonstrated the use of generics for procedure types in the proof-of-concept
for widget creation, we exposed a number of inadequacies in the approach.

We realized that this approach would require a large number of generic instantiations
* for each widget class used in an application. We hoped that the generics would be a thin

interface to the intrinsics, but the widget creation generic showed that references to generic
parameters were needed throughout the widget creation code. We concluded that generic

Ada packages to simulate procedure types require virtually complete implementation of the

intrinsics within generics, thus forcing applications to instantiate a copy of the intrinsics for

each widget class used in the application.
Simulating procedure types with generics failed to handle all uses of procedure types

in the intrinsics. Our method worked because the procedures were determined at compile

time and based on a static tree structure (the widget class hierarchy). This failed on dy-

namic structures uch as the run time widget tree. The generic approach failed in widget

creation when calling the widget's parent's insert-child procedure. The generic instantiation

of XtCreate Widget can not know anything about the parent's insert-child procedure. Pro-

cedure types referenced via dynamic structures, such as the widget tree, require a different

approach.
The expected code size due to the large number and size of generic instantiations and

the failure of the generic approach for simulating some procedure types made this approach

unacceptable.

25 January 1990 STARS-RC-1000/001/00

3 DESIGN APPROACH 16

package intrinsics is
-- superclass to subclass chaining generics
generic

with procedure superclass.-class.part. initt(class : widget-class);
with procedure class -part-.initialize(class : widget.class);

procedure clas.-pazt.init.chain(clas : widget.class);
end intrinsics;

package body intrinsics is
procedure class-part.init.chain(class : widget-class) is
-- classpartinitialize in a downward chaining procedure

class.ptr : core.class := widget-tooreclass(class);
begin

it class.ptr.core.class.superclass /a null-address then
superclass.class.part.init(class.ptr.core.class.superclass)I

end it;
it class.ptr.core-class.class.prt.initialize then

class.part.initialize(class);
end it;

end class.part.init.chain;
end intrinsics;

Figure 4: Generic Supercl ss-Subclass Chaining

.package label is
labelcorepart : core.class-part :a

(superclass a> superclass.to.-idget.class(simpleclassrec.ptr),
classname => "label".
widget-size -> labelrec'size,
class-initialize => true.
class.part.initialize => false,

-- remaining fields follow

-- downward chaining functions
-- renames the label widget's superclass class.part.init function
procedure superclass.class.part.init(class : widgetclass)

renames simple.class_part.init;
-- the label widget's classpartinit function is null so instantiate
-- the generic with the superclass's and a dummy label class-part.init
procedure classpart.init is

now class.part-nit-chain(superclass.class.part.init,
null.class.part.initialize);

end label;

Figure 5: Generic Superclass-Subclass Instantiation

25 January 1990 STARS-RC-01000/001/00

3 DESIGN A_. ROACH 17

* 3.3.3 Cascading Generics and Case Statement Simulation

Although Ada does not provide for procedure types (from which reference types can be
constructed), it is still possible to simulate procedure types in a system-independent manner.
The simple scheme is to assign a unique identifier to subprograms, and use this identifier as
an index to an Ada case statement which invokes the subprograms. The only difficulty that
needs to be addressed in this implementation is how these unique identifiers are generated.

In a Q-task standards report [8] Unisys proposed one implementation which uses the
Ada generics mechanism to generate procedure references. The package specification for this
implementation is provided in figure 6. The full implementation is provided for convenience
in appendix A.

This implementation makes use of cascaded generic instantiations to in effect create a
linked-list of generated (via instantations) package bodies. Each generated package body
acts as a state machine which manages a discrete range of subprogram indexes; indexes that
lie outside this range indicate that the actual subprogram referenced by the index is managed
by a different instantiation, which is then accessed via a "next.callback" operation provided
as a generic actual from a previous (cascaded) instantiation.

Since this explanation may be obscure, an example usage of this implementation is pro-
vided in figure 7. Note that this usage generates only one procedure reference per instantia-
tion, despite the fact that the generic interface allows as many as three procedure references
to be generated. This is done for simplicity to illustrate the use of cascaded generics as a
means of achieving an open-ended mechanism for attaining procedure references.

One advantage of this approach (beyond it's pure use of Ada) is that application pro-
grammers (i.e., toolkit clients) can add application-defined subprogram type instances to
cascades of pre-defined (i.e., by the toolkit intrinsics or widget programmers) subprogram

type instances. This reduces potential configuration management problems that would be

introduced if all subprogram type instances needed to share the same case statement dis-

patcher.
One problem with this implementation concerns the visibility of the top-level (i.e., "last")

generic instantiation in the cascade. For systems such as Xt, which execute client subpro-

grams based upon event sequences generated from the server, client defined subprogram

references must be visible to the toolkit intrinsics, in addition to widget and intrinsics de-

fined subprogram references. As a result, the toolkit must either be (at some level) a generic

abstraction which parameterizes the "call" operation for each procedure type, or else the

application programmer must complete the implementation of a top-level non-generic call

interface whose implementation will reference the top-level generic cascade.
Turning the intrinsics into a generic abstraction is not tenable for reasons which were

discussed in the previous section. Requiring the application programmer to complete the

procedure call implementations appears to introduce a considerable degree of inconvenience,

but perhaps this is outweighed by the added level of machine independence. The UR-20

25 January 1990 STARS-RC-01(001/00

3 DESIGN APPROACH 18

. package callback-s.echanism is

CALLBACK-CALL..KUOR: exception;
CALLBACK-.INSTALL-.ERROR: exception;
CALLBACK..RAIGE..EUOR: exception;

RAX..CALLBACKS: constant:m 1024;
MUI-CALLBACKS: constant:= 3;

subtype callback-id..rangs is natural range 0 .. kZ.CALLBACKS;

package cailback-ids is
type callback..id..type is private;
null-.id: constant callback-.id..type;

function to..callback.id-.rang.(id: callback-id.type)
return callback..id..rango;

private
function next..callback-id return callback-.id..range;
type callback..id..type is record

the..callback..id: callback-id.range : next..callback..id;
end record;
null-.id: constant callback..id..typ :u

(the..callback-id m> callback..id-.rangefirst);
end callback..ids;

use callback..ids;

-the default procedures will never actually be called
procedure default-.next..call.back~id: callback.id..type; S: string);
procedure dot ault..callback(s: string);

generic
with procedure cbl(s: string) is default~callback;
idi : in callback-.id-type:m null..id;
with procedure cb2(s: string) is default..callback;
id2 : in callback.id..type:s null-id;
with procedure cb3(s: string) is default-callback;
id3 : in callback-.id..type:m null-id;
with procedure next..callback~id: callback-id.type; 8: string)

is default.next.call-.back;

package callbacks is
procedure callback (id : callback-.idtype; s: string);

end callbacks;

end callback..uechanism;

Figure 6: Procedure Types - Generics Generation

25 January 1990 STARS-RC-01000/001/00

3 DESIGN APPROACH 19

with callback.mechanism; use callback.mchanism;
with tox.io; use text.io;
procedure test.callback.mochanism is

use callbackids;

procedure p(s: string);
procedure q(s: string);

pl: callback-id.-typo; -- p1 and qi now have valid callback ids
q1: callbackid.type;

-- in p.callbacks, cb2 and cb3 are "default" callbacks
package p.callbacks is now callbacks(cbl => p, idl => p1);

-- q.callbacks uses p.callbacks callback routine to chain instantiations
-- procedure p and q could have both been installed in a single
-- instantiation, but we're demonstrating instantiation chaining.
package q.callbacks is now callbacks(

cbl => q.
idl => qi,
nextcallback a> p.callbacks.callback);

use q.callbacks; -- make the last instantiation directly visible

-- procedures p and q do different things
procedure p(s: string) is
begin

put-lineC"P:" A s);
end p;
procedure q(s: string) is
begin

put.line("q:" & s);
end q;

begin
callback(pl, "hello world");
callback(ql, "hello world");

end test.callback.mechanism;

Figure 7: Procedure Types - Sample Usage

25 January 1990 STARS-RC-01000/001/00

3 DESIGN APPROACH 20

* toolkit does not use the cascading generics implementation; however, the procedure invoca-
tion interface actually used is not inconsistent with the cascading generics implementation.

Another apparent problem concerns performance. A considerable amount of code needs
to be executed just to locate the appropriate procedure to execute. This problem is com-
pounded if several cascades of generics are needed. Although the generic abstraction can
be implemented to accommodate more procedure formals, architectural considerations may
require several cascades, e.g., one instantiation for intrinsics defined subprogram instances,
one for widget defined instances (perhaps one for each widget type), and finally at least one
for the application itself

3.3.4 System Dependent Programming

Yet another alternative implementation scheme for introducing subprogram types takes ad-
vantage of the system-dependent Ada attribute 'address, applied to subprogram instances.
Although this attribute "refers to the machine code associated with the corresponding body,"
(Ada LRM), this definition leaves open considerable compiler implementation leeway, and
so any solution based upon this feature is inherently non-portable, both across compilation
systems and host environments.

Nevertheless, this form of system dependent programming appears to be more justifi-
able than, for example, the unchecked programming used in the task-based simulation noted
above. Also, although non-portable, the amount of system-dependent code required to im-
plement subprogram types with the 'address attribute appears to be rather small, assuming
the compilation system provides adequate documentation on procedure call conventions (and
does indeed implement the 'address attribute in a reasonable way).

The package specification for a sample subprogram type is provided in figure 8. (This
subprogram type will be referred to later in this report when runtime inheritance is de-

scribed). The package body is provided in appendix B for the VADS, TeleSoft, and Tartan

compilers. 2 The procedure control block structure is tailored for use with Alsys, although

the same data structure also works for VADS and TeleSoft (the data fields are not used in

these compilers).
The interpretation of this implementation is very similar to that described in the cas-

caded generics implementation: the generic instantiation generates a unique identifier for

the subprogram type instance. In fact, the package interface is nearly identical, and for

practical purposes the implementations are interchangable (which is convenient, in case the

system-dependent approach is unworkable for a given compiler). The major difference is that

the implementation of the "call" subprogram dispatch procedure will be in C or assembly

language, or some language which can de-reference subprogram addresses (in effect, execute

a "jump subroutine" or "jsr" instruction).

IThe Alsys implementation is more convoluted due to difficulties in getting documentation on the Alsys

procedure call conventions.

25 January 1990 STARS-RC-O1000/001/00

3 DESIGN APPROACH 21

package xt-procedure.typos is

-- vendor-specific procedure control block:
type procedure-control-block is record

proc.address : system.address;
-- subprogram environment context data fields here...

end record;

package xt.widget-class.procs is

type zt.widget.class.proc.rop is limited private;
type zt.widget.class.proc is access xt.widgetclass-proc.rep;

-- A constant used for runtime inheritance resolution:
function xt.inherit.widget.class.proc return zt.widget.class.proc;

-- the subprogram dispatch function:
procedure call(the.proc-id : mt-widget.class.proc;

the-widget-class : widget.class);

-- this generic is instantiated with the procedure to be called
-- proc.id will acquire the address of the the-proc as well as
-- the (activation frame) environment needed to execute the.proc
generic

proc.id : in out xt.widget.class.proc;
with procedure the.proc(the.widgetclass : widget.class);

package procedurepointer is
end procedure-pointer;

private

type xt-widgot.class.procrop is new procedureocontrol.block;

end xt.widget.class.procs;

-- other procedure type definitions follow...

end xt.procodureotypes;

Figure 8: Procedure Types - System Dependent

3 DESIGN APPROACH 22

*It should not be concluded that this mechanism is completely without restrictions. In
fact, several very subtle problems can be encountered, and great care must be taken in
defining procedure types for use with this implementation.

One major area of concern is related to parameter passing conventions: successful use of
this implementation requires an adequately documented compilation system. For example,
an unconstrained array can be implemented as an array with a dope vector; such arrays can
quite naturally be passed to subprograms via two parameters, not one. Thus, in general
the foreign language "call" routine will have to be tailored for each subprogram type to
accommodate passing different numbers and types of arguments.

Note: The UR20 implementation actually employs a single dispatch function that invokes
ada subprograms via their address, and passes only a single argument - the address of a record
structure which encapsulates the set of arguments defined for various procedure types. See
appendix B for the details of this optimization.

A second area of concern is related to the consequences of Ada subprogram and type
elaboration issues. Essentially, safe use of this implementation requires the programmer
ensure that the subprogram body and all types used by the subprogram be fully elaborated
before the subprogram reference is obtained via instantiation.

Finally, and perhaps most importantly, safe use of the system-dependent implementation
requires thoughtful application of usage guidelines which ensure that the subprogram object
will exist only in scopes compatible with the referenced subprogram. That is, care must
be taken to ensure that the envi-onment (e.g., stack activation frames) appropriate for the

* referenced subprogram exists at the time the subprogram is called. This could have been
enforced in the language by providing the call operation as part of the generic subprogram
type abstraction, rather than in a global context; however, this would have resulted in
visibility problems described in the previous section on cascading generics. A simple usage

guideline for the system-dependent implementation is to introduce the subprogram object

declaration within the same scope which contains the subprogram declaration.

3.4 Inheritance and Polymorphism in Ada/Xt

The notions of inheritance and polymorphism are closely related in object oriented systems.

Crudely, polymorphism describes a type model in which operations (in general, "properties")
defined on a single type are applicable to a family of related types. Ada generics provide

a form of parametric polymorphism, i.e., a set of operations is applicable to a type if that

type is parameterized by a set of known properties, e.g., is assignable, has equality defined,

has an ordering relation defined, etc. This is sufficient only if the types in a system can

be characterized by a finite number of known properties. This is not the case in an object-

oriented class hierarchy, which defines (via inheritance) an inclusion polymorphism type

model.
The Ada/Xt toolkit simulates polymorphism and inheritance by means of a visible

25 January 1990 STARS-RC-01000/001/00

3 DESIGN APPROACH 23

* pseudo-type hierarchy which provides a logical type system to support a (apparent) poly-
morphic external programmatic interface, and a private actual-type hierarchy to support the
implementation of inheritance. That is, the pseudo-types are "public", i.e., visible in the
API, whereas the actual types are "private", i.e., visible only to widget programmers. This
usage of the terms public and private is analogous to Ada public and private types, but is
not implemented in terms of Ada private types.

3.4.1 Pseudo-Types and Compiled Data Structures

The Ada/Xt type hierarchy is actually composed of four parallel hierarchies: a hierarchy
of widget class pseudo-types, a hierarchy of widget instance pseudo types, and a hierarchy
of actual widget class and instance types. The programmatic interfaces to the toolkit are
implemented in terms of the pseudo-types, so called because in reality these types are merely
placeholders for the actual types, defined by widget programmers.

Figure 9 provides a pictorial representation of the Ada toolkit type implementation.
Widget class pseudo-types are arranged in an Ada eubtype hierarchy; widget instance pseudo-
types are arranged in a (parallel) derived type hierarchy. Within the implementation of the
intrinsics and widgets, toolkit code performs unchecked conversions from Ada objects of type
pseudo-type to the corresponding actual type in the parallel actual-type hierarchy.

This set of parallel type hierarchies provides a number of important features for the
Ada/Xt implementation. The pseudo-type hierarchy allows the toolkit to be extensible
with respect to widget sets. By defining the intrinsics operations in terms of pseudo-types
rather than actual widget types (i.e., their Ada record representations), one set of intrinsics
functions can manipulate an open-ended number of actual widget types.

A further refinement of the pseudo-type hierarchy is possible due to the Ada derived type
feature. Occasionally, widget programmers may wish to define operations on widgets which
are accessible directly to the application programmer. For example, text edit widgets may
provide operations to retrieve the currently selected segment of text within the editor view.
2 In Ada/Xt, the widget programmer can define such operations on a widget. Subclasses
of this widget will "inherit" operations via Ada type derivation on the pseudo-types. The
operation will still be applicable on subclass instances because the code "inherited" will be

performing an unchecked type conversion to a record structure which is layout-compatible

with the subclass instance's actual type. Thus, the pseudo/actual-type hierarchy in effect

augments Ada type derivation with type representation changes.
Note that the use of unchecked conversion from pseudo types to record type definitions in

the parallel actual-type hierarchy requires strict widget programmer control over the layout

2Note: for the most part, application programmers make application operations available to the widgets
to be executed by the widget or toolkit on behalf of the application. This kind of inversion is typical
of event-based progrLmming, and distinguishes toolkit programming from "traditional" procedure-based
programming styles.

25 January 1990 STARS-RC-01000/001/00

3 DESIGN APPROACH 24

Pseudo-Type Hierarchy Actual-Type Hierarchy

instance hiearc

class hierarc class - type class1L
,

P~ record type class 1

record type class2

record type class I

record type class 2

record type clauss
L'~ --- --------

legendrecord type class

---------- unchecked conversion

record type class 3

......... ,. Ada derived type
record type class

_A Ada subtype

Figure 9: Ada/Xt Widet Type Model

25 January 1990 STARS-RC-4)IO /001/00

3 DESIGN APPROACH 25

* of the actual-type record definitions. That is, for an operation defined on object class 1 (in
figure 9) to work on an instance of object class 3, the actual representation of the record for
instances of class 1 and class 3 must be identical for the common prefix fields, i.e., for the
components defined in the record definition for class 1. Proper enforcement of this constraint
only can be ensured through use of Ada record representation clauses.

3.4.2 Packaging Widget Type Definitions

As indicated, a widget type definition consists of four distinct hierarchies, arranged as a
"public" and "private" widget definition interface. The public interface is defined in terms

of the pseudo types, and defines operations that are to be available to the application pro-
grammer.

The private interface is defined in terms of Ada record definitions which characterize the
object state for widget classes and instances. In order to ensure that widget subclasses share
a common data structure prefix with their ancestors in the superclass-subclass hierarchy, the
widget programmer must ezplicitly insert the record type definitions for the type hierarchy
of the subclass's ancestors, and use Ada record representation clauses to ensure the relative
ordering of these fields within the newly defined widget.

Figure 10 illustrates the packaging structure for defining widgets in the Ada/Xt toolkit.
This mechanism is quite similar to the method used in the C implementation, with the
major differences being the use of representation clauses, and the use of Ada derived types
to automate some of the inheritance process. Note that the Ada "with" hierarchy parallels
the superclass-subclass taxonomy defined by the logical widget class structure. 3

The Ada packaging scheme described in figure 10 has some interesting consequences
conerning order of elaboration. In short, the widget type taxonomy must be elaborated in
superclass to subclass order; this can be enforced through use of the pre-defined Ada pragma,

elaborate. Appendix C of this report illustrates the current UR-20 Ada/Xt implementation's

widget packaging scheme by providing the full package specification and implementation for

the (opaque) widget type, simple.widget.

3.4.3 Subprogram and Resource Inheritance

The actual type hierarchy provides the data structures to support inheritance, but not the full

implementation. Inheritance of subprograms and resources (i.e., widget data fields accessible

to the application programmer by named reference) is performed once per widget class, at

run-time, in the Ada/Xt implementation. Although this is an implementation detail, it has

some impact on the way widget programmers specify widget data structures.

Each time a widget is created (using zt-create-widget) the intrinsics check to see that the

sAn additional "with" dependency exists between the body of the public implementation and the private

specification for implementation purposes.

25 January 1990 STARS-RC-O 1000/001/00

3 DESIGN APPROACH 26

Public (Pseudo) Types Private (Actual) Types

W wB c'ito' Ad ~d

Figur 10 SigtTpes Spe Sdpecakaigoveto

25 January 1990 STARS-RC-01000/001/00

4 THE ADA/XT DESIGN 27

* widget class of the newly created widget his been initialized. If it has not been initialized,
the intrinsics invokes a class initialization procedure which passes, in superclass-to-subclass
order, the uninitialized widget class actual data structure to the class initialization procedure
defined for all widget classes (defined as the classpart-initialize operation in core-class).

Each class-part-initialize operation is responsible for performing subprogram inheritance
(besides other class initialization actions) of subprograms ("methods") defined for the su-
perclass. The class.partinitialize code examines the procedure type fields of the subclass
structure passed to it. If any of these fields have special values (called "inherit" values),
the class -part-initialize operation will overwrite these fields with the subprogram reference
being inherited from the superclass. Thus, it is the responsibility of the widget programmer
to request inheritance of superclass methods by use of specially defined constants; it is also
the responsibility of the widget programmer to implement the class.part initialize operation
to correctly implement inheritance of inheritable methods defined by widget classes.

Inheritance of resources is managed by the intrinsics (i.e., it is more fully automated). The
implementation of .- source inheritance is similar to method inheritance: it is done during
a one-time initialization of a widget class via a superclass-to-subclass chaining. However,
instead of calling widget-specific initialization code, the intrinsics performs a resource list
merging and compilation process. The result is that each widget class instance has a list with
its resources, and the resources of all of its superclasses. The list is ordered in a subclass-to
superclass fashion, so that subclasses may "override" inherited resources. Thus, it is the
responsibility of the widget programmer to specify a list of resources which the intrinsics

* will then "compile" and merge with other lists at class initialization time. This merging
is a run-time optimization which bypasses the need for inheritance searches for referenced
resources.

4 The Ada/Xt Design

The design approach described in the previous section allows the Ada specification of data
types and functional interface to follow the C specification quite closely. The following

sections describing the Ada specifications for the Xt Intrinsics follow the C specifications

described in [3]. Each section corresponds to a similar chapter in [3], and the specifications

should be read in conjunction with [3]. Where the semantics of the subprograms differ from

the C version, the differences are noted, otherwise the semantics are as described in [3].

Obviously, there are differences between the Ada specification and the C specification.

Most of the differences can be categorized into the following categories:

" C functions with side effects

" pointers versus out parameters

" length for list parameters

25 January 1990 STARS-RC-01000/001/00

4 THE ADA/XT DESIGN 28

1 argument list assignment

" representation of resource lists

* procedure types

Any C function returning a value and having side effects on parameters has been changed
to an Ada procedure with one additional argument whose type is the return value type. Since
C does not allow out parameters to functions, pointers are used. Wherever possible out
parameters of the base type are used instead of pointers to the base type. Ada provides
the 'length attribute for arrays which can be used instead of supplying a count or length for
arrays passed as parameters. The C count parameters are removed wherever possible. The
next two differences are closely related to resource management and are discussed at length
in the resource management section.

Procedure type specification in Ada is described in the design approach, and all procedure
type specifications are provided as pseudo type declarations at the end of each section. These
pseudo type declarations represent instantiations of package templates. The following is the
template for procedure type packages:

package <procedure type name>.procs is

type <procedure type nano>.proc.rop is limited private;
type <procedure type name>.proc is access zt.callback.proc.rep;

function xtinhorit.<procedure type name>
return (proceduro.type.name>;

procedure call (thoproc.id : <procedure type name>;
<the procedure arguments>);

generic
proc-id : in out <procedure type name>.proc;
with procedure the.proc (<the procedure arguments>);

package procedure-pointer is
end procedure.pointer;

private -- procoduro.control.block is implementation defined

typo (procedure type namo>.procrep is new procedurocontrol.block;
end (procedure type name>.procs;

Procedure type package definitions appear in the specification as:

pseudo-type <procedure type name> is
new proc.typo(<tho procedure arguments>);

For example, the procedure type zt-widget-class-proc, which is a procedure with a single
widget-class argument, is defined as:

pseudo-type zt.widget.class-proc is
new proc.typo(wc: widget.class);

S

25 January 1990 STARS-Rc-uIu.u/uLI/UU

4 THE ADA/XT DESIGN 29

*A number of fundamental data types are implementation dependent, and are noted in the
specifications. Additional types are defined as private, but left unspecified. These represent
opaque data types such as translation tables and resource databases and are not defined
in these specifications. The specifications use data types defined in the Ada Xlib bindings.
These are contained in the z-windows package specification and are not included in this
document.

Packaging Considerations

In the following sections, the types and subprogram interfaces which comprise the system-
independent Ada/X Toolkit specification are defined as a series of packages. These packages
encapsulate groups of related types and operations, and in many cases correspond exactly
with groups of related operations as defined in [3]. However, the packaging structure de-
fined in the following sections should be viewed as a guideline for implementing conformant
Ada/Xt implementations; alternative packaging models may be desirable or even necessary
under some circumstances.

For example, the UR20-UI Ada/Xt implementation defines the pre-defined widget and
widget classes in separately compiled Ada packages. This packaging model makes the core
widget definitions dependent upon the intrinsics package, which defines the type marks for
widget-class and widget. This packaging scheme relies upon the implicit assumption that
there exists a mechanism to perform type conversions between objects of type e.g., widget -

* implemented in UR20's implementation as a .ystem.address - to objects of type core.widget.
Should this assumption prove invalid on a given architecture (e.g., an architecture with two
addressing modes, such as 32 and 48 bit addressing modes, might implement system.address
as a variant record), alternative implementations may impose alternative packaging models.
For example, in the above multi-address type architecture$ the pre-defined core type could
be defined in a subpackage of the intrinsics package; then type widget could be defined as an
access to type core. This would bypass the need to convert system address types to widget
types'.

The following specifications try to strike a balance between sufficient conciseness and
overspecification. Specific type representations or packaging decisions should be considered
as very strong recommendations. For example, the decision to represent a list type as an

unconstrained array of some base type should be considered part of the system-independent
specification; also, the decision to include a type within a package is a similar "strong rec-

ommendation." In many cases, however, type definitions are not given a package context; in

these cases, implementations should consider themselves free to determine their own pack-

aging.
Figure 11 provides a top-level overview of the packaging structure for the UR20-UI

4Although it would still be necessary to perform type conversions between distinct access types.

25 January 1990 STARS-RC-O1000/0O1/t(

4 THE ADA/XT DESIGN 30

* Ada/Xt implementation. The figure does=not include all of the pre-defined widget type
dependencies; those that are included are representative of the packaging model.

Note that the following specifications assume a foundational set of X types, as for example
defined in the SAIC STARS Foundations Ada/Xlib bindings. In the following specifications,
such types are prefixed by "x.windows.type," even though the Ada/Xlib bindings may require
deeper qualification to subpackages. Types that are not preceded by the x-windows package
name can be assumed to be either intrinsic types to Ada, or defined by Ada/Xt.

Finally, note that some types are referenced before they are defined. This is necessary in
order to associate type declarations with appropriate operations.

25 January 1990 STARS-RC-O1000/o01/oo

4 THE ADA/XT DESIGN 31

intrinsics (spec) core-public (spec) coz..privat. (spec)
s u b p a c k a g e : c r - u l c (o y -it ..pocedue-typescr.ulc(bd)....

zt..utilitieu

xt-.initialjzers

xt ..intance management
zt-.compouite.managaent composite-.public (spec)
it-go0metry management

zt.popupimanagement composit..public (bodyl
zt..-class -management
it -event -management

zt-.callbacks

it -conveni once

zt ..eource maniagement
zt-.translat lon..innagemeni

intrinsics (body)

Legend

A - B A "withs" B

Figure 11: UR20-UI Ada/Xt Packaging Implementation

25 January 1990 STARS-RC-01000/001/00

4 THE ADA/XT DESIGN 32

* 4.1 Widgets

The basic abstraction in the toolkit is the widget and its associated widget class. The three
basic widget types

1. Core

2. Composite

3. Constraint

are described here. The structures representing these three widget types map directly to

the C data structures. See 1.3 of [3] for a complete discussion of widgets. All widgets are
derived types of an implementation defined type widget or subclasses of widget, and widget
classes are subtypes of an implementation defined type widget-class or subclasses of type
widget-class. widget and widget-class are usually some form of physical address to the data
structures described in this section. The intrinsic. provide conversion routines for all the
widget and widget class types known to the intrinsics. The default values for the widget
types described here are the same as specified in 1.3 of [3].

4.1.1 Core Widgets

The following types are assumed to be visible to the core-private package specification, and
are not defined elsewhere in this report:

typo widget is iaplementation.defined;
typo widget-.class is implementation.defined;
type widg*etlist is array (natural range <>) of widget;
type widget.list.ptr is access widget.list;

typo cardinal is range 0 .. implementation.doinod;
subtype position is cardinal;
subtype dimension is cardinal;

subtype xt._otfset is cardinal;
type t..otfset.list is array (natural range <>) of xt.offset;
type xtotseotlist.ptr is access xtoffsetlist;

type ztstring is access string;

type xt-.boolean is Lmplementation.deined;
type xt _versiontype is implementation.dofined;

The following package defines the pre-defined core widget class and instance types:

25 January 1990 STARS-RC-0 1000/001/00

4 THE ADA/XT DESIGN 33

. package core-private in

-- 1) define widget-.part (core is special case -- no nested records)

core-.part..size : constant cardinal := iumplementation-..defined;
type core-part is record

*elf : widget;
widgetelass : widgeteclass;
parent : widget;
the-rm.nam*: z-windows zru..naze;
boing-.destroyed : zt..boolean;
destroy..callbacks: xt..callback-.list..ptr;
constraints : z..windows.caddr..t;
z :position;
y :position;
width : dimension;
height: dimension;
border-width : dimension;
managed : zt..boolean;
sensitive: zt..boolean;
ancestor-sensitive : zt-boolean;
event-table : zt-event..table;
tm : xt.TM.R*G;
accelerators : zt..translations;
bordr-pizel : x-.windows.pixel;
border-pizuap : x-indows.pixaap;
popup-list : widget-.list..ptr;
name : zt..string;
my-screen : z.windows.screen;

0 my-.colormap: i-windows color-sap;
my-window : ..windows.window;
depth : cardinal;
background-.pizel : -.windows-pixel;
background-pizmap :z..windows.pizuap;
visible : xtboolean;
mapped-.when..managod : zt..boolean;

end record;

type coro-part..pointer is access core-part;
type core..widgot..pointer is access core-part;

-2) define class part

core..class-.part..5ize : constant cardinal := implemntation-defined;
type core..class..part is record

superclass : widget..class;
class-name : st-string;
widget-size: cardinal;
class-initialize : xt..proc;
class-.part.initializo : xt..widget..class.proc;
class-initod : xt..booloan;
initialize : xt..init.proc;

25 January 1990 STARS-RC-O 1000/001/00

4 THE ADA/XT DESIGN 34

initialize-.hook : zt..args..proc;
realize : xt..roalize-.proc;
actions : xt..action-.list..ptr;
resouresm: zt..resourco.list..ptr;
the..zuclass: z-windows .xrm..class;
compress-.notion : xt-.boolean;
compress..exposure : zt..boolean;
compress-.inteorloave : xt..boolean;
visible..interost : zt..boolean;
destroy : zt..widget..proc;
resize : zt..widget..proc;
expose : zt-expose..proc;
met-values : zt-set.valuesitunc;
set-values-hook : zt..args-fuhZc;
set-.valu~s-.almost : zt..almost-proc;
get..values-hook : zt..args..proc;
accept-.focus 3 zt..accept..tocus..proc;
version : zt-vorsion-.type;
callback-.privat. : zt..offset..list..ptr;
ta-table : zt..string;
quory-.goatry : zt.gouetry..hazidler;
display..accolorator : t-string.proc;
extension : z..windows.caddr..t;

end record;

-types for conversion operations:

type coro-class-part..pointer is access coro-class..part;

ype core.class.pointer is access cor*_class-part;

&- llocate the class constant

function to-.widget-class is new uzichecked-.conversionC
source => core..class-.pointesr.
target -> widget-class);

the..core-.class : constant widget..class :a
to-.widget..class (new core-class-.part);

end core-private;

4.1.2 Composite Widgets

-- superclass context
with coro-private; use core-privato;
package composite-private is

couaposite..part..rec..size : constant cardinal :U izpleuentation.dofined;
type composite..part-.rec is record

children :widget-.list..ptr;
num-slots :cardinal;

25 January 1990 STARS-RC-O1000/0O1AX)

4 THE ADA/XT DESIGN 35

insert..position : zt-.ordeor.proc;
end record;

coupohite..uidget..size :constant cardinal :
core-.part-s.ize + composit..part-rec-.sizo;

type composit..,idget-.re is record
core..part : core -private. core..part;
compouite..part : composite.part..rec;

end record;

for composite..idgt-.roc use record at mod implementation-.defined;
core..part

at 0
range 0 .. core-.part..size - 1;

composit..part
at 0
range core..part..size .. core..part-size 4 compouite.part-.rec-sizo 1;

and record;

type composite-.part-.pointer is access composit..part..rec;
type composite..vidget..pointer is access couaposite...idget..rec;

composite.class.part.rec.size : constant cardinal := izplementation.defined;
type composit..class.part-.rec is record

geomotry-.handler :xt-.gometry-handler;
change-managed : xt...idget-.proc;
insert-.child : t-w.idget..proc;
delete-child : xt-w.idget-.proc;
extension : z...indows.caddr.t;

end record;

composit..class-.part..size :constant cardinal :a
core..class-part..size + composit..class-part-rec-.size;

type composite.class-.part is record
core..class..part : coroeprivate. cor*_.class..part;
compoit..class-.part :composite.clast-.part..rec;

end record;

for composit..class..part use record at mod implementation-defined;
core..class-.part

at 0
range 0 .. coro-class-.part..sizo - 1;

compos ite-class part
at 0
range core..class.part..size . composite.class..part..5iZ* - 1;

end record;

type composite-class.part-.pointer is access composit*-class-part.rec;
type composit..class.pointer is access composite..clasi..part;

-allocate the class constant

25 January 1990 STARS-RC-O 1000/001/00

4 THE ADA/XT DESIGN 36

function to-.widg~t..class is now unct~eckod.convrsion(
source -> composite-class -pointer,
target => uidget..class);

the..couposite..class : constant widget-class :
to-w.idget..class (no. composite-cas..part);

end compohite-.private;

4.1.3 Constraint Widgets

-- superclass context
with composite-.private; use composite..private;
with core-private; use core..private;

package conatraint..privato is

constraint.part-.rec..uize : constant cardinal :a 0;
type constraint..part-rec is record

mull;
end record;

constraint.widget-.size : constant cardinal :
composite-..idget..size + constraint-part-.rec-.size;

type constraint-.widget-.rec is record
core-part :core..private.co-part;
composite..part :composite-private. coinposite..part..rec;
constraint-.part :constraint.part..rec;

* end record;

for constraint-.widget-.rec use record at mod impleuentation-.detined;
core..pazt

at 0
range 0 .. core..part-.size -1

composite-part
at 0
range core..part..size .. couiposit...widget..size - 1;

constraint-.part
at 0
range composite..idget..size .. constraint-.widget-size -1;

end record;

type constraint..part..pointer in access constraint-.part-rec;
type constraint -widget.-pointer is access constraint _widgt..rec;

constraint -class..part..rec-sizo : constant cardinal := implement at ion-.dot ined;
type constraint-class.part..rec is record

resources : zt-.rsource.list-ptr;
constraint-siz* : cardinal;
initialize : zt..init..proc;
destroy : xt...idget.proc;
set-values : zt..set..valuoi...unc;

25 January 1990 STARS-RC-01000/001/0O

4 THE ADA/XT DESIGN 37

extension : z..windows.caddr.t;
end record;

constraint-class.part.size : constant cardinal :
compos its-class -part -size + constraint -classpat-rec-.s ize;

type constraint -clas-part is record
coro-class.part : core..private. coro-.class-.part;
composite-class.part composit..private. composit..class.part..rec;
constraint-class-.part constraint-class-.part-.rec;

end record;

for constraint-class.part use record at mod iiplomentation..defined;
coro-class-.part

at 0
range 0 .. core..class.part-.size - 1;

compohito-class.part
at 0
range core..class..part..sizo .. compouite.class.pait.size - 1;

constraint-class.part
at 0
range composit..class.part..size . constraint.class-paxt-.size - 1;

end record;

type constraint.class.part-.pointer is access constraint.class-.part..rec;
type constraint-.class..pointer is access constraint-class-.part;

-allocate the class constant

function to..widget..class is new unchecked-.conversionC
source a> constraint.claus..pointer,
target -> widget-.class);

the..constraint-class :constant widget..class :
to-.widget..class (new constraint-.class..part);

end constraint-.private;

4.1.4 Widget Class and Superclass Look Up

function xt..class (w. widget) return widget-class;
function xt..superclass (w :widget) return widget-class;
function xt..is.subclass (w : widget;

wc :widgot-class) return boolean;
procedure xt..check..subclass (w : widr-t;

Inc :widget-.class;
message : string);

25 January 1990 STARS-RC-O1000/001/00

4 THE ADA/XT DESIGN 38

* 4.2 Widget Instantiation

This section describes widget instantiation. Refer to chapter 2 of [3] for a comple4 e descrip-
tion of widget instantiation. The following is the Ada programmatic interface to functions
and data structures required for widget instantiation.

4.2.1 Toolkit Initialization

The following types are assumed to be visible to xt-initializers, and may be declared within
this package:

type application.context is private;

The package specification zt-initializer specifies subprograms and data structures used
in toolkit initialization.

package xt.initializers is

procedure xt.toolkit.initialize;

function xt.create.applicationcontext return application-context;

procedure xt.destroy.applicationcontext
(context : in out application.context);

function zt.vidget.to.application-context
(v : widget) return application.context;

procedure zt.display-.initialize (app.context : application-context;
thedisplay : z.indows.display;
application-name : string;
applicationclass : string;
options : xrm.optiondesc.rec-list;
azgc : in out cardinal;
argv : in out string);

procedure xt.open.display (appcontext : application-context;
display-string : string;
application-name : string;
application.class : string;
options : xra.option.desc.rec.list;
argc : in out cardinal;
argv : in out string;
return-display : out x.windows.display);

procedure xt.close.display (the-display : in out x.windows.display);

end xt.initializers;

25 January 1990 STARS-RC-01000/001/00

4 THE ADA/XT DESIGN 39

* 4.2.2 Loading the Resource Database

function xt.database (the.display : x.windows.display) return
x-windows. mzr.database;

4.2.3 Parsing the Command Line

Although Ada compilers differ in handling the Unix notion of argc and argv, the Ada Toolkit
recognizes the standard X command line options. The type definitions for command line
option description records are:

type zrm.optionkind is (xrm.option.noarg.
zru.option.is.arg,
xrmoptionstickyarg.
xrz.option.set .ag.
xzrm.option.res.arg,
xrm-opt ions kip.arg,
xrm.option, skip.line);

type xrm.option.desc.rec is record
option : zt.-tring;
resourcename : xtstring;
arg-kind : xrm.optionkind;
value : zwindows.caddr.t;

end record;
type xzraoption-desc.lint is

array (Natural range <>) of zrm.option.dosc.rec;

4.2.4 Creating Widgets

Widget creation in Ada differs only in its treatment of argument lists. Argument lists in C
are essentially lists of untyped data; a problem for strongly typed languages like Ada. Since

argument lists are closely related to resource management, a discussion of the handling of

these lists in Ada is deferred to the section on resource management.
The following types are assumed to be visible to package xt-instance.management, and

can be defined witLbn this package:

subtype xt.arg.val isx.windows.caddr.t;
type xt.arg is record

name : xt.string;
value : Zt-arg.val;

end record;
type arg-list is array (natural range <>) of xt.arg;
type arg-list-ptr is access arg.list;

The following package declaration provides basic instance manipulation primitives:

package xt.instancomanagement is

25 January 1990 STARS-RC-O1000/001/00

4 THE ADA/XT DESIGN 40

function zt-.croat.eidget (name -: string;
of.class : widget.class;
parent : widget;
args : arg.list) return widget;

function xt.app-croate.shell (application-name : string;
application-class : string;
Wc : widget.class;
thedisplay : xwindows.display;
ergS : arg-list)

return widget;

procedure xt-.add-callback (w : widget;
callback-name : string;
callback : xt.callback.proc;
client.data : z.windows.caddr.t);

procedure zt-create.window (w : widget;
win-class : z.windows.window.class;
thevisual : z.windows.visual;
value*mask : zt.value.mask;
attributes : z.windows.z.set.window-attributes);

procedure zt.realize.vidget (w : widget);

procedure zxt.unrealize.widgot (w : widget);

procedure ztdestroy-widget (w : widget);

function xt-isrealized (w : widget) return boolean;

function zt.display (w : widget) return z.indos.display;

function zt.prent (w : widget) return widget;

function xt-screen (w : widget) return .xwindows.screen;

function xt-window (w : widget) return z.windows.window;

end zxtinstance_anagement;

4.3 Composite Widget Management

The package specification zt-composite-management specifies the subprogram units providing
functions for managing children of composite widgets. These subprograms are described in

chapter 3 of [3].

package xt.coposite.management is

function zt_is_composite (w : widget) return boolean;

procedure xt_-nage.children (wlist : widget-list);

25 January 1990 STARS-RC-O1000/001/0)

4 THE ADA/XT DESIGN 41

procedure zt.manag.child (child : widget);

procedure zt.unaanage.children (wlist : widget.list);

procedure zt.unmanage.child (wlist : widget.list);

function zt.is..ianaged (w : widget) return boolean;

function ztcroate.managed.widget (name : string;
of-class : uidgt-.class;
parent : widget;
ergs : arg-.liut) return widget;

procedure xtset.appd.when.mAnaged (w : in widget;
uap.whon.manged : booloan := true);

end xztcompositesuanagement;

4.3.1 Procedure Types in Composite Widgets

The following package specification describes the procedure type for the insert-child and
delete-child procedures used for adding/deleting children of a composite widget.

pseudo-type zt.widgetproc is
now proc.type(the..idgot : in out widget);

The procedure type for specifying the insertion order of children, the insert-position field
* of a composite widget, is:

pseudo-type zt.order.proc is
new proc.type(the.widget : in out widget);

4.4 Shell Widgets

The following data structures specify the various shell widgets described in chapter 4 of [3].

The shell widgets are:

e Shell

e Override Shell

" WM Shell

e Vendor Shell

" Transient Shell

" Top Level Shell

25 Januar-y 1990 STARS-RC-O1000/00 1A0

4 THE ADA/XT DESIGN 42

* o Application Shell

-- superclass context:
with compasito.private; use composite..private;
with core..privat.; use core..private;

package shell-.private is

-Define various shell parts and widget record extensions

-- sholl-.widgot

shell.part-.r~c..size : constant cardinal :a izplementation..defined;
type shell..part-.rec is record

geometry : zt-string;
croate.child-.popup..proc : zt-.proc;
grab-.kind : zt-grab-kind;
spring-loaded : zt..boolean;
popped-.up : xt-.booloan;
allow-sholl-resize : xt..boolean;
cliont-spocified : xt-.boolean;
save-under : zt..booloan;
override-rodirect : xt..booloan;
popup-callback : xt-.callback..list..ptr;
popdown..callback : xt-callback-.list..ptr;

end record;

shell-widget-size : constant cardinal :
composite..idgot..size + shell..part..rec..uize;

type shell-.widget-.roc is record
core-.part :core-.private.core..part;
composite-.part :composite-private composite..part-rec;
shelpart : shell-part-rec;

end record;

for shell.widget-.rec use record at mod implemntation-definod;
core-..part
at 0
range 0 .. core-part..size - 1;
composite-.part
at 0
range core-.part-size .. composite..idget..size - 1;
sheillpart

at 0
range couiposite..widget..size .. shell..widget-size -1

end record;

type shell-.part.pointer is access shell-part.rec;
type sholl..widget-.pointor is access shell-.widget..rec;

-- override..shell.widget

override-shell-part-rec..sizo : constant cardinal := izzplementation..deined;

25 January 1990 STARS-RC-O1000/001/00

4 THE ADA/XT DESIGN 43

type override-sholl-.part..-roe is record
null;

end record;

override-..shell-widgot..uize : constant cardinal :
uhell-.widget..sizo + override-sholl-partrc.size;

type ovorrid..shll.vidgt-.rec is record
core-.part : core..privat..cor...part;
composite-part : composite-private. composite-part-.rec;
shell-part : shell-.part-.roc;

override..sh~ll..part : ovorride..uhell-part-.rec;
end record;

for overrid..sholl..idget..re use record at mod implomontation.deiinod;
core-.part
at 0
range 0 .. cor...part..siz. 1
composite-part
at 0
range core..part..size .. composite..vidget..sizo - 1;
shell-part

at 0
range composite-..idget-.size.. shell-widget-siz* - 1;

override..sholl..part
at 0
range shell..widget..sizo .. override..shell..idget-size - 1;

end record;

type ovorride-shell.part..pointer is access override..shell..part..rec;
typo override..shell..idget-.pointor is access ovorride-gh*ll-widgot-.roc;

-- uu..sholl-.widget

u.ahell..part-.rec..size : constant cardinal :w iuipleuentation-dofined;
type u..shell.part-.rec is record

title :zt-.string;
wm..tizeout : x-mindows-timo;
wait.for-.wm :zt..boolean;
transient : it-boolean;
sizo-hints : z...indows.cadd..t;
umhints : z-windows.caddr.t;

end record;

u..shell-.widget..sizo constant cardinal :
override-.sholl...idgot..sizo + wm.shell~part~roc~siz6;

type vu..shell-widgt.rec is record
cor*_part :core-private-core-part;
couposite~part : composite-.private .composite-part.rec;
sbeli-part : shell-.part.rec;
override..shell..part : avrride..sholl-part..roc;
wu..shell..part : u..shell-part..rec;

end record;

25 January 1990 STARS-RC-01000/001IA0

4 THE ADA IX T DESIGN 44

for u...shell..,idget..rec use record at mod implementation-.defined;
core .part
at 0
range 0 .. cor...part..size - 1;
camposit...pwzt
at 0
range core..part-size .. composite..widget-..ize - 1;
shell-.part

at 0
range couaposite..widget..size .. shell-vidget-siz* - 1;

override-.shell-.part
at 0
range shell-vidget-size .. override..shell...idget-.sizo - 1;

wu...sheli-part
at 0
range @verride-sholl.widget..uize .. w...shell...idget..size - 1;

end record;

type wm-s.holl-.pat.pointer is access u..sholl-pat.ree;
type u..uhefl...idget-pointer is access wm-.shell...idget..roc;

-- vendor..shell..widget

vendor..shell.part-.rec-.size : constant cardinal := implomentation-.defined;
type Yondor..shell-.part-rec in record

vendor..specific : mplementation-defined;
end record;

vendor..shell.widget-size : constant cardinal :a
u..shefl..widget..size # vondorsholl..part..rec..size;

type vendor.shll..,idget..rec is record
core..part : core..private.care..part;
composite..part : compos iteprivate. couposite..part..rec;
shli-part : shefl..part..rec;
override..shell..part : overridoeshll.pazt.roc;
wu..shll-part : w...shelpart-rec;
vendor-.shll..part : vendor..sholl..part.ree;

end record;

for vendor-sholl...idget..rec use record at mod impleuetation~defined;
core-part
at 0
range 0 .. core-.part..sizo - 1;
comnposite-.part
at 0
range core..part..size .. composite..widget..size - 1;
shllipart

at 0
range composite...idget..size .. shell...idget..siZe -1

overrid-shelpart
at 0

25 January 1990 STARS-RC-O 1000/001/00

4 THE ADA/XT DESIGN 45

range shell...idget..uize .. ovaerride..uholl.widget-..izo - 1;
uu-hefl.part0 ~ ~ ~~a 0 vrie.hl..de.uz . u.hl.ude.ie-1

range vri-solido-ie. -shl-igt-ie-1

at 0
range uu..uholl...idget-size .. vendor..uholl-widget.uize - 1;

end record;

typo vendor-s.hll-pat-.pointer is access vendor..hell.part..rec;
type vendor.uhell-w.idget-.pointer is access vendor..shell-..idget..rec;

-- transient-.sholl...idget

transient.sholl-.pa.ree..csize :constant cardinal :- 0;
type transient-.shell..part..rec is record

null;
end record;

transiont.shell...idget.hizo constant cardinal :
vendor-.shll..vidget..uize transient.sholl.part.rec.size;

type transient-shell.vidgot-.rec is record
core..part : coro-.privato eore..part;
composite-.part : composite..private. composite..part..rec;
shli-part : shell-.part-.rec;
override-.shll-part :overrido-.sholl-part..roc;
wm-.shll-part : wu.shll..part-.rec;
vendor-.shll..part : vendor-.shll..part-rec;
transient.shell-.part : trans ient..shollpart..roc;

* end record;

for transient-sholl-w.idget-.rec use record at mod impleaentation..defined;
core .part
at 0
range 0 .. core..part..siZe - 1;
comipohite-.part
at 0
range core..part-s.ize .. calnpos2.t...idget..Uize - 1;
shell-.part

at 0
range composite-..idget..iize .. shell-..idget..size - 1;

override..hell.part
at 0
range shell-vidget..size .. overrid*-sholl-widget-siZe 1;

wm-.sholl..part
at 0
range overridesholl-widget-.size .. wm..shll-widget..size - 1;

vendor-.sholl..part
at 0
range wm-.shell...idget..size .. vendor..sholl-widgot..Uize - 1;

transient ...holl..paxt
at 0

25 January 1990 STARS-RC-O1000/00 1/00

4 THE ADA/XT DESIGN 46

range vendor-..hll..idget..sizoe . tran sient-shll.idgot.s ize -1

end record;

typo trans iont -shllpat..pointor is access tranu int .shfll-part.rec;
type transint-.shefll..idgot..pointer is access trn int shell-wuidgt -re;

-- top-.lovol-sholl-w.idgot

tap-.lievel-.shell..part-.roc.size : constant cardinal := implementation..deiined;
type top..level.uhell.part-.rec is record

iconname : zt..string;
iconic : zt..boolomn;

end record;

top-lovel-.sholl-widget.uize : constant cardinal :
transiont.shollwidget..sizo + top.lovel-sholl..part..roc.size;

type top..level..uhll-widget..ree to record
core-.part : core..privato.core..part;
composite-.part : coumpoite.,privat . compoite..pazt..rec;
shell-.part : shell..part..roe;
override..shell..part : override..shell-.part..rec;
wm.shll..part : u...mhefllpart..rec;
vendor..shll-part :vendor-shell..part..ree;
transient-.shell-.part : transientshefll.part..rec;
top-.lvel-shll-.part :top-vol-hll.prt.ric;

end record;

for top..level-s.hell..widget..rec use record at mod iuplementation-defined;
core-.part
at 0
range 0 .. core-partasize - 1;
compoite-part
at 0
range core-part-uize .. composite...idget..size - 1;
shell- part

at 0
range composite..vidget..uize .. shell-widget..size - 1;

override. shell-part
at 0
range shell-widget..size .. override-.shell...idget.5ize 1;

win..she ll-part
at 0
range override.shell..vidget..size .. u...hell-widget..sizo - 1;

vendor.shell-.part
at 0
range wm-shell..widget..uize .. yendor..hell-widget.5ize - 1;

trans ient-.shell-.part
at 0
range vendoz..shell...idget..size .. tranuient.shll-v.idget..uize -1;

top-ovel-sholl-part
at 0
range transient..shell-widget..size .. top..levol.5hell..idget-size - 1

25 January 1990 STARS-RC-0J1 00/)1/00

4 THE ADA/XT DESIGN 47

end record;

type top-.level-shell.part-.pointer is access top..level.sholl.part-.rec;
type top-level-shll.widget..pointer is access top..level-shll.hidgst..rec;

-- applicaticn-hl..vidget

application-shell-part-rec..size
constant cardinal :- impleuentation-WieUned;

type application-.shell-part-.rec is record
class : widget-.class;
the..zra-class : z...indows .xra-.class;
argc : cardinal;
Argv : argv.type;

end record;

application-.sholl...idget..size : constant cardinal :
top..level..sholl...idget..siz* + application.shll-partrec..size;

type application.shll-w.idgeo..rec is record
Coro-part : core..private.core.part;
composite-.part : composite..private. composite.part.re;
shell-.part : shell..part..rec;
override..shell..part : override.shellipart-rec;
wa-.shell..part : u..shell.part..rec;
vendor.shll-part : Yendor..sholl-part.rec;
transient.shell..part : transiont-shell-part.rec;
top-levl.shll-.part : top-.lvol-shll.part-.rec;
application.sholl..part : application-.sholl..part..rec;

end record;

for application-s.hell.,idget-.roc use record at mod implementation-.defined;
coro..part
at 0
range 0 .. core..part..size - 1;
compos ite-part
at 0
range core-.part-.size .. composite...idget..size - 1;
shell-part

at 0
range composite...idget-siz* .. shell-.widget-.size - 1;

override.sholl-part
at 0
range shell-widgt-.size .. override-.sholl-widget-.size 1;

urn..sholl..part
at 0
range override-.shll-widget..5ize .. wrn...hll-idget..size - 1;

vendor-.sholl..part
at 0
range w...sholl-widget..size .. vendor-.sholl-widget..Uize - 1;

transient .shell..part
at 0
range vendor.sholl-w.idget-siizo .. transient~shell-idget.sizo 1;

25 January 1990 STARS -RC-O 1000/O001/00

4 THE ADA/XT DESIGN 48

top-.level- shell-.part
at 0
range transient -shll.widget-.s ize top- level- shell-w.idgot -size -1

applicat ion-. sheilpart
at 0
range top.lovol-shll.widgot..hize

application-..sholl.widgot -size -1

end record;

type applicat ion- sholl-part -pointer is access appli cat ion.shll.part.-rec;
typo application-.shell-.widget.pointor is access

application-shll-widgt-.rec;

-define class records for shell widget classes

-- holl..class

sholl-clas..part.roc.size :constant cardinal := implementation..defined;
type shell-class.part-.rec is record

extension : x-indows.caddr-t;
end record;

shell..class..part..size : constant cardinal :a
composit..class-.part...ize + shell.class.part.rec-.size;

type shell-.class-.part is record
core-.class-.part : core-private. core..class.pazt;
composite-claspart : composite-private. coaposite-.class-.part..rec;
shell-.class-.part :shell-clas s-prt-.ree;

* end record;

for shellclass-.part use record at mod implementation-defined;
coro-class..part
at 0
range 0 .. core..class-.part..size - 1;
composite..clags.part

at 0
range core..class-.part-.size .. composite.class..part..size - 1;

shell.class..part
at 0
range composite..class..part..5ize .. shell.class-.part-.size - 1;

end record;

type shell-class.part-.pointer is access shell.class-.part-.rec;

type sholl..class-.pointer is access shell~class..part;

-- override.shll-class

orride-.shellclass-part-rec-s.ize
constant cardinal := implementation.definod;

type override-shollelass.part.reC is record
extension :x-..indows.caddr..t;

end record;

25 January 1990 STARS-RC-01000/U01/o

4 THE ADA/XT DESIGN 49

overrid..shell.class.part..siz. : constant cardinal :
shell-clam 8-part- size + override- shell-.cla s.part.roc_ size;

typo override- shell-..class -part is record
core..class-part : core..private. cor...class..paxt;
composite-clas..part : composite..private. composite-class-.part-.rec;
shell-class-.part : shell..class-pazt..rec;
ovorride-shell-class.pazt : overrid..shell.class.part-.rec;

end record;

for override-.shll-class-pazt use record at mod iinpleaentation-.defined;
core..class-.part
at 0
range 0 .. core..clauss-part-size -1;

composite..class-part
at 0
range core..clause-part..size .. composite-.class-.part-sixe - 1;

shell-ciasu .part
at 0
range composite.class.part..ize .. shell-class.part.size - 1;
overrid..shell.class..part

at 0
range shell..class-part..size .. override-.sholl..class..pazt..size - 1;

end record;

type ow'erride.shll-class-.part-.pointer is
access override.shll-.class..part..re;

type override-shll-class-.pointer in access override-uhll-c.lass..pazt;

- msholl..class

ua-shllclass-pat-rc-.size : constant ca.rdinal := implementation-.defined;
type u'm-.shell-class.part-.rec in record

extension : ... indows.caddr..t;
end record;

wm-shell-class.patsize : constant cardinal :
override-s.holl-class..part..size + wm-shell-Iclss-part-.rec-.size;

type u..uhell-class-.part is record
core..clas.part :core..privato. core..class..part;
composite-class-part : composite.-private .composit-clas..part..rec;
shell..class-.part : uhell-clasu..part..ree;
override..shell..class-.part : ovorride..shll-class..part-.rec;
u...shellcass-.part : w..sholl-class.part.rec;

end record;

for u...sholl-class..part use record at nod implementation-.defined;
core-.class-.part
at 0
range 0 .. core-.class-part-size - 1;
couzposite..class.part

at 0

25 January 1990 STARS-RC-O1 000/001/00

4 THE ADA/X T DESIGN 50

range coro-class-part -size .. coupos its-..class.-part -a ize -1

shell..class ..part

rang copste-class -part -size solcas-at- z
ov.errdescll- cl.ass-pr

at 0

range ov~rrid..sholl.class.pat-.sizo .e-hl-lpxpr-ie-1
end record;

typo u..sholl-.class..part..pointer is access wm-.shll-claw..part-.rec;
typo vm.sholl-class..pointor is access wu..shell..claus ..pcrt;

-- vendor-sholl..class

vendor.shll.class.part.rc-.size
constant cardinal :- implementation-.defined;

type vondor.sholl-class-part..ree is record
extension : z-windows.cadd..t;

end record;

vendor.shell-.class..part..size : constant cardinal :a
w.shell-class.part..sizo * ndar-shll-class.part.rec-.size;

type vendor..sholl-.class-part is record
core-class-.part : core..private. core.class-.pal;
composite..class..part : couposite..private. composit..class..part..rec;
sheillciassupart :shell..class-part-.rec;
ovorrideshll-class-.part : override.sholl-clang-.part..rec;
u..sholl.class.part : wm..sell.class..part..rec;
vendor.sholl.class-.part : vendor.sholl.class.part..rec;

end record;

for vendor.shll-class-part use record at mod implementation-.defined;
Core..class-part
at 0
range 0 .. coze..class..part..size - 1;
compositoeclass-part

at 0
range coro..class..part..size .. composite.claUs..part..5iZe -1;

sholl-class.part
at 0
range composit..class..part..5ize .. shell-.class-.Part..5ize
overrid..shell..class-part

at 0
range shell-class.part..5ize ovorrido-shollclass.part.5ize 1;

uu-sholl.class.part
at 0
range override.shell.class..part..5ize .. wm..sholl..clas-.part..5ize - 1

vendor-.shell..class..part
at 0

25 January 1990 STARS-RC-0 1000/001/00

4 THE ADA/XT DESIGN 51

range wmshell..class -part -size

en rcod;vendor.sholl.class-.part-siz. 1

tYPe Tendor..sholl-class -part.-pointer is access Tendor.shell-.clas s -part..rec;
type Tendor-shll.clas s-pointer is access Tendor..shell- class-part;

-- trans iont..sholl-class

transint.-shell-.class -part..rec- size
constant cardinal : - implementat ion..definod;

type transient-sholl-.clauss-paxt..rc is record
extension : z...indows.caddz..t;

end record;

transiezit.sholl-elass-pazt..uise :constant cardinal :w
vendor..shell-.class..part-.sizo transient..shell-clas.part-rec..size;

type transient-shll-class.part is record
core..class..part : core-private core..class-.part;
coaposit...Class..pazt : COaposite-private coMPOgit-clas.Part-.rec;
shell..class..part : shell..class..part..rec;
ov~erride.sholl.class..part : Overrido-shellclass.part.rec;
wm..sholl..class-part :wua.shll-class-paxt.rec;
Tondor.shll-.class-.part : Tondor-.shell..class..part..rec;
transint-shll-.class-.part : transient-sholl-.class-.part..rec;

end record;

for transient.shell.class..part use record at mod implementation-.defined;
core..class..part
at 0
range 0 .. core-.class..part-.size - 1;
compos ite-class part

at 0
range cor*-.class-part-.size .. composite..class-part..size - 1;

shell.class.part
at 0
range composit..class-.part..size shell~class-part.size - 1;
override.sholl-.class..part

at 0
range shellClas..part.siZe .. override..shellclass.part-.size 1;

vm..shell..class..part
at 0
range overrid..shell-class-part..size . wm-.shell-class-.Part..siz* - 1

Tendor..shell..class..part
at 0
rang. wmshell.class-.part..SiZe

vendor..sholl-class.part..Uize -1;

trans jent-.shell..class-part
at 0
range vendor..shell-class.part.size

transiont.shollclass.part-.size - 1;

25 January 1990 STARS-RCA) 1000/001/00

4 THE ADA/XT DESIGN 52

end record;

type trans int.shfll-class.-part-.pointer is
access trans ient- shell-class -pat -re;

type trans ientshll.class -pointer is
access trmnsient _ahll-class -part;

-- top..lovel.shell- class

top-.level- shefllclas s -part.-re-.size
constant cardinal := implemontation.defined;

type top-.level- shellclas s-part.-re in record
extension : z...indown.caddr.t;

end record;

top-.lvel-sholl..class..part..size : constant cardinal:
transient-shll.class-.part...ize + top-.level-shll-class-part-rec-.size;

type top-levlshell-class.part is record
cor*-classapart : core-private .core-claspa"t
composite-.class.part : coaaposite..private. composite-.clas..part-.rec;
sholl-.class-.part : shell-class-part-.rec;
override-shll.class-pazt : ovorrid*shllclass-part..rec;
w...sholl-.class..pazt : wm-sholl-class.pazt.rec;
vendor-.shll-class..part : vezidor..shell..class.part-.rec;
transient.shell-.class-part : transint.shll-.class..part..rec;
top-.level-.sholl-.class-.part :top.lovel-shll.class.part.rec;

end record;

for top-.lvel-shell..class..part use record at mod implementation-defined;
core-class-.pazt
at 0
range 0 .. core-.class..part-.size - 1;
compos ite-class part

at 0
range core..class..part-5ize .. composit..class-part-s.ize - 1;

shell-class.part
at 0
range composit..class..part..5ize shell-class.part..5izo - 1;
overrido-shell..class-.part

at 0
range shell..clauss-part..5ize .. override..shell..cla55-part-5iZe -1

,m-shell..class .pazt
at 0
range override-shell-class-part-siZ* .. wm-.shll-clas..part..5iZC 1;

vendor- shell..clas s -part
at 0
range u'm-.shll-.class.part.IiZC

vendor-.sholl..class-.part..5izo 1;
trans ient-shell.class..pL~t

at 0
range vendor-.sholl..class-.part-size

transiontshell-class-part-size - 1;

25 January 1990 STARS-RC-O1 000/001/00

4 THE ADA/X T DESIGN 53

top-.lovel..uhel.. class-.pwrt
at 0
range tranxint.shll-.clasu.part..size

top..lev~l..holl..class..part..size 1;
end record;

typo .top-.lvel-shell-.class-.part-.pointer is
access top-.level- hll.clas .part.rec;

type top-.level-s.hll.class -pointer is
access top-.level-sholl..class -part;

-- application..sholl-class

application.shell.class..pazt..r~c-size
constant cardinal :- implementation.defined;

type application.shll.class-.part..rec in record
extension : z..windows.cadd..t;

end record;

top..level-.shell-.class..part..size + application-shll-..las..part.rec-.siz.;
type application.shll-.class..part is record

core-.class-.part : core..private. core-class..part;
composite.class.pazt : composite..private. coaposit..clas.part.rec;
shell-.class-.part :shell..clasu..part..rec;
override-.shell-class-.part : override-.shell-.class..part..ree;
um-shell-class.paxt : u..shell-class-part.rec;
vendor.shell.class-.part : vendor..shell-class.part.rec;

trasiet..hel.-class-.part: transint.shll.class-pat-.rec;
top.level-shellelass.part : top-level.shllclass.part.rec;
applieation,shell.clasu..part :application.shll.class-.part..rec;

end record;

for application.shll-class-.part use record at mod ixpleaentation.detined;
core..class-.part
at 0
range 0 .. core..claus..part-.size - 1;
composite..class..part

at 0
range core..class-part..size .. couiposite-.class..part-s.ize - 1;

shell..classpat
at 0
range composite-.class.part-.size .. shell-class.part.size - 1;
override..shell-clase-part

at 0
range shell.class..part..size . override..shellclass-pazt..size - 1;

wm-.shll-class-.pazt
at 0
range override..shellclass-part.size .. u.shellclass-part..size - 1;

vendor-s bell-class-.part
at 0
range vu..shell..class-part-..ize

vendor.sholl.class-.paxt..uize -1

25 January 1990 STARS-RC-01000/00/OO

4 THE ADA/XT DESIGN 54

transient ..uholl..class -.part
at 0
rang. vendor.shol1..class..part..size**

trans ient-.sholl..clast-pazt..uize i
top-velshllclast-.part

at 0
range transient- sholl.clas a pa-.s ize

top..levol.shefl..class.paxt.size -1;

applicationshll.class.part
at 0
rang. top..lovel..sholl..class-part..sizo

application-hll.class.part-.size -1
and record;

typo application-.shell..class..part..pointer in
access application-.shell.class.pat.rec;

type application..sholl..class..poiater in
access application.sholl-class.part;

-- allocate the class constant

function to...idget-.class is new unchocked..conversion(
source => shell..clas...pointer.
target => widget-.cl a s;

thoeshll.class : constant widgot..class :
to-widget..class (new shell..class-part);

function to..widget..class is now unchecked-.conversion(
source *)overrid..sholl.class-.pointer.
target *)widget-.class);

the..ovorride-shll-.class : constant widget-class :
to..idgot-class (new ovorrido-.shell.class-.part);

function to..widget-.class is new unchecked-.conversion(
source -> wm..shll-class..pointer,
target => widget-.class);

the..wu.sholl..class : constant widgot..class :s
to..widget-.class (new wu..sholl..class-.part);

function to..widget-.class is new unchocked-.conversion(
source => vondor-.sholl..class-.pointer,
target -> widgot-class);

the..vendor-.sholl-.class : constant widgot~class :m
to..widget..class (new vendor..sholl-class.part);

function to..widget-.class is new unchecked-conversion(
source -) transient-hll-.class..pointer.
target a> widgot..class);

25 January 1990 STARS-RC-O 1000/001/00

4 THE ADA/XT DESIGN 55

the..transient..sheflclass : constant widget-class :a
to..widget..class (now transient-uhll-clau..part);

function to..widget-class is now uachecked..convorsion(
source -> top..level..shell.clasu..pointer.
target => widget-.class);

the..top-.levol-shefl..class : constant widget-class :a
to..widget..class (no. top..level..uholl-.class-part);

function to-widget..clasu is now unchockod-.conversion(
source => application-.shell-clasu..pointer,
target M> widgot~class);

the..application.sholl..class : constant widget-.class :
to-.widget..class (no. applicatin.shll-class-.part);

end sholl-.privat*;

4.5 Pop-Up Widgets
The package specification zt-geometry..management defines the types and subprograms spec-
ified in chapter 6 of [3]. The semantics are unchanged.

package xt..gometry_.MAagement is

type zt-gouetry..result is
(xt..goometry-.yes,
xt.geometry-.no,
zt..gometry..almost,
xt..goomtry-.dono);

type xt-,stack..aode is
(zt.above. -- bove in z..lib-.&. Stack..Rode..Type
xt..below, -- Below in z..lib-. Stack-Mode-Type
zt..top..ii. - Top-ItU in z..lib...a Stack..Mode..Type
xt-.bottom..if, - Bottou.If in z..lib-.. Stack-N.ode..Type
zt-.opposite. -- Opposite in z-lib.& Stack-M.od...Type
xt..dont..change); -- not in z-lib...a

subtype xt..geometry..mask is x-.windows.boolean-.arzay (O0. 7);

type xt..widget-.goometry is record
request-mods : zt..geometry..mask;
z, y : position;
width, height, border-.width : dimension;
sibling :widget;
*tack-uode : xt-stack.uode;

end record;

zt-.null.geometry.mask : constant zt-.geometry-m.ask:

25 January 1990 STARS-RC-01000/001/00

4 THE ADA/XT DESIGN 56

Ozt.goomotry-muask' (others => fal.s);
zt.cwz : constant zt_geoaotry.uiask :-

zt.geomotry.mask'(O => true, others a> false);
zt-cwy : constant xt-.gomotry.ask :=

zt.goomntry.-ask'(1 a> true, others -> false);
zt.cw-width : constant zt.geometry-mask :=

zt.goometry.mask'(2 a> true, others => false);
xt.cwheight : constant zt-.geonstrymask :=

zt.goomotry-mask'(3 => true, others => false);
zt.cw.border.width : constant x-.goomotrymask :a

zt..geoetry.mask'(4 => true, others => false);
zt.cwsibling : constant zt.geoetry-mask :&

zt.geometry-mask'(S => true, others a> talse);
xt.cw.stack.modo : constant zt-.goomtry.mask :-

xt.goometry.mask'(6 => true, others a> false);
zt-.cw.query.only : constant zt-.goomotry.ask :a

zt-.goometry.ask'(7 a> true, others a> false);

procedure zt.mako.goometry.requent
(w : widget;
request : in out zt.widget.goometry;
reply-return : in out zt.widg*t-geometry;
result : out zt-.idgot.goometry);

procedure zt-ako.rsizo.requost
(w : widget;
width, height : dimension;
width~return, hoight-.return : out dimension;
result : out zt-.goometry.result);

procedure xt-.ove.widget (w : widget;
X, y : position);

procedure xt-.resize.vidget (w : widget;
width, height ; dimension;
border.width : dimension);

procedure xt-onfiguro.widgot (w : widget;
X, y : position;
width, height : dimension;
border-width : dimension);

procedure x_.rsizo_ewindow (w : widget);

procedure xt-query..gometry
(w : widget;
intended : x-widgetogoonotry;
preferred-return : out xt-.widgot-goometry;
result : zt_.goomotry.result);

end xt_gomotry-management;

25 January 1990 STARS-RC-0 1000/001/00

4 THE ADA/XT DESIGN 57

Three procedure types are needed by Leometry management. The first is the resize
procedure which is of the previously defined type zt-widgct-proc. The remaining two, geom-
cfry..manager and query-.geometry, are of type zt-geometrj..handler.

pseudo..typ* zt..goometry..handler is
now proc-.type(requeut : zt..widget-.goatry;

geoomtry..return : zt-.widget.geoaetry)
return zt-.geometry-.result;

4.6 Geometry Management
The package specification zt-geometry-.management defines the types and subprograms spec-
ified in chapter 6 of [3). The semantics are unchanged.

package zt..geooutry.uanagement is

type zt..goomtry..reuult is
(zt-geooutry.yes,
zt..goaetry-.not
zt..geouetry..almost.
zt-gooutry-.done);

type zt..stack-mode is
(xt-.above. -- Above in z-.lib.&. Stack.Kode..Typo
zt..below, - Below in z..lib. Stack-..ode..Type
zt..topif, -- Top-.If in z-lib-. Stack-Kode.Type
xt~bottom-.if, - Bottom-IXf in z..lib-... Stack-H.ode..Type
zt..opposite, -- Opposite in i-lib.. Stack..Kode..?ype
xt..dont..change); -- not in z..lib-.

subtype zt..geomotry..uask is z..windows.boolean-.array (0 .)

typo xt-..idget.goametry is record
requestumode : zt..geometry..ask;
z. Y : position;
width. height, border-.width : dimension;
sibling : widget;
stack-mode zt..stack~uod*;

xt..null-geometry..uask : constant xt..geometry..mask :
zt-.geometry-.mask' (others *>false);

ztcw.z : constant xt-goometry..uask :=
xt-.gometry..uask'(O -> true, others a> false);

zt..cw..y : constant xt..geometry-.mask :=
xt-goometry..ask'(1 a> true, others a> false);

xt..cw..width :constant xt..goetry.mask :a
xt-.gometry.mask'(2 => true, others => false);

xt-cw-.height :constant xt-.goetry..ask :~
xt-eoouetry-.uask'(3 u> true, others => false);

zt..cw..border-.width : constant zt-geomotry..mak

25 January 1990 S''ARS-R-4J1UU/U1/X

4 THE ADA/XT DESIGN 58

zt-.goomtry.mask'(4 a> true, others a> false);
xt.cw.sibling : constant xt.goomotry-uask :a

zt.goomotry-mask'(5 -> true, others a> false);
ztcw.stack.modo : constant ztgoomotry.mask :-

xt.goometry.nask'(6 => true, others -> false);
ztcw.qury.only : constant zt.gooetry.ask :-

zt.geometry.mask'(7 => true, others a> false);

procedure zt.nako.geometryrequest
(w : widget;
request : in out zt.widget.goometry;
reply.roturn : in out zt.widget.goometry;
result : out zt.widget.goometry);

procedure zt.make.rosizo.roquest
(w : widget;
width, height : dimension;
width-return, height.return : out dimension;
result : out zt.goomotry.result);

procedure zt.move.widgot (w : widget;
z, y : position);

procedure xt.rsizo.widget (w : widget;
width, height ; dimension;
border-width : dimension);

procedure xt_.configure.widget (w : widget;
, 7 : position;

width, height : dimension;
border.width dimension);

procedure zt.rosizewiindow (w : widget);

procedure xt.quoryN ometry : wdgt;

intended : zt.widgot.goometry;
preferred-return : out zt-widgot..gooetry;
result : zt.goometry.result);

end xtgoometry.anagement;

Three procedure types are needed by geometry management. The first is the resize

procedure which is of the previously defined type zt-widget-proc. The remaining two, geom-

etrymanager and query-geometry, are of type zi-geometry-handler.

pseudo-type xt.geomotry.handler is
now proctype(request : zt-widget.goometry;

geometry-return :xt_widget-goomotry)
return xt.geometry-result;

25 January 1990 STARS-RC-O0W/) 1/u

4 THE ADAIXT DESIGN 59

. 4.7 Event Management
The following package specification defines the event management types and subprograms

with semantics as described in chapter 7 of [3].

package x teven..-anagement is

type zt.event.table is private;
type int rval.type is iaplomontation.dofined;
type device is implomentation-dofined;

-- zt typos
subtypo xt-.input-mask is x.-indows.booloan.array (1 .. 32);
zt-i_-xovont : constant xt-input-mask :8

xt.input-.mask'(1 -> true,
others -> false);

zt..im-.timer : constant xt..inpult.mask r
zt-nput-ask'(2 =) true,

others > f alse);
zt.ialtornatoinput : constant x.input.nmask :*

zt.input-.ask'(3 a> true,
others W> false);

xt-input-oad..mask : constant zt.input .mask :a
x.input ._ask'(4 u> true,

others => false);
xtinputwritae.mask : constant xt-.input .mask :=

xtinput.mask'(S => true,
others .> false);

xtinput.oxcopt-.ask : constant x-inpu-.ask :=
t..input .uask'(6 -> true,

others W> false);

function xtapp.add-input (app.contoxt : applicationcontext;
source : device;
condition : xt-.input-mask;
proc : xt.input.callback.proc;
client.data : x.windows.caddr.t)

return xtinput-id;

function xtapp.add.timoout (appcontoxt : application-contoxt;
interval : intorvaltype;
proc : xttimor-callback proc;
cliont.data : x..indows.caddrt)

return xt.intorval.id;

procedure xt-.romovootimout(timor : in xt.intorvalid);

procedure xt-.add-grab (w : widget;
exclusive, spring-loaded : boolean);

procedure xt-.romovo.grab (: widget);

O

25 January 1990 STARS-RC)100/OO1/UO

4 THE ADA/XT DESIGN 60

procedure zt..set..k~yboard-..ocus (subtroe, descendant :widget);

fu~nction zt..call..accept-.tocus (w : widget;
t : z..windowu.time) return boolesan;

funct ion zt-.app-.pnding
(app..contezt : appliction-.context) return zt-.input..mask;

procedure zt-app.peek.event Capp-context : application-.context;
euent-resturn : out ZeOvent;
,event-found : out boolean);

procedure zt-.app.nezt.event (app-contozt : application..contozt;
event-return : out z..event);

procedure zt-app-.procehu-event (app-.contezt : application..contezt;
mask : xt-.input..uank);

function zt..dispatch..event (event :zxevent) return boolean;

procedure xt..app..main..loop (app..contezt :application-.context);

procedure xt..bet-sensitive (w : widget;
sensitive : boolean);

function xt-.is-.snitive (w : widget) return boolean;

procedure xt..app...edd.work.proc(app.context : application-.context;
proc : xt-.work..proc;
client-data : .windown.caddr-.t);

procedure xt-.romove-.work-.proc (proc: zt-.work.proc);

procedure xt-add-event-.handler
(w : widget;
an..event-mask : ovent..uask;
non-maskable : booloan;
proc : zt..event-.handler-.proc;
client..data :z-windows.cddr-t);

procedure xt..remove..evont-.handler
(w : widget;
an..event..mask : event..ask;
non-.maskable : boolean;
proc : zt-ovent.handler-.proc;
client-.data : z..windows.caddr-.t);

procedure zt-a.dd.raw-event-handler
(w : widget;
an..evont..uask : event-mask;
non..maskable : boolean;

25 January 1990SIA-K- UU/U/u

4 THE ADA /XT DESIGN 61

*client-.data : -idweart;

procedure mt..re3ove..raw...vent..handlor
(w : widget;
aneovent-mask : event..aask;
non-miaskable : boolean;
proc : zt..event.handler..proe;
cliont..data. : x-w.indos.caddr-t);

function zt..build-event-sask (w : widget) return *vent..mask;

private

implementat ion..derimed

end zt..event-..azagoment;

The following procedures types are defined for event management:

pseudo-.type zt-input-callack.proc is
now proc-.type(cliezit-.data : z..windown.caddr-t;

source : device;
id : xt-.input..id);

psoudo-type xt..timer-.callback..proe is
now proc.typo(cliont-data :x..indows-caddr.t;

id : zt~nterval-id);
pseudo-.type xt..accept..locus..proc in

now proc..type(te-.widget :widget;
the-,time : z-.windows-timo)

return boolean;
pseudo-type zt-.work..proc is

now proe-.type(cliont..data : z..windows.caddr-..)
return boolemn;

pseudo-type zt-.expose..proc is5
now proc..type~th...widget : in out widget;

theeOvent : zeovent;
the-region : z..rogion);

pseudo-.type xt..event..handlor..proc is
now proc..typo~tb...widgot : widget;

client-data : x-..indows.caddr-.t;
thee*vent : z..windows .events .event);

4.8 Callbacks

The package specification zt-callbacks defines the types and subprograms associated with
callbacks. The semantics of the subprograms are as described in chapter 8 of [3). In the
Ada specification objects of type xz-callbacki differ from the C specification in that lists

25 January 1990 STARS-RC-O1000/001/00

4 THE ADA/X T DESIGN 62

* should not be null terminated. For this reason we have changed the C procedure names for
XtAddCallbacko and XtRemove Callback. to zt-add.callback-list and zt-remove-callback-list
respectively. The functionality of these procedures remains the same.

package zt-callbacks is
type xt-.callback-.status is

(zt..callback.no..list,
zt-callback-.hau..aone.
zt..callback-.ha..soae);

type xt-callback.rec in record
callback : zt-.callback..proc;
closure : x-.windows.caddr-t;

end record;

type zt-.callback..list is array (natural range <>) of xt..callbaek..rec;
type xt..callback..list..ptr is access zt..callback..list;

procedure zt.,add-callback (w : widget;
callback~name : string;
callback : zt..callback-.proc;
client-data : z-.windows.caddr..t);

procedure zt..add-.callback-.list (w : widget;
callback..nae : string;
callbacks : t..callback-list);

procedure zt-.remove..callback (w : widget;
Vcallback-.name : string;
callback : zt-.callback..proc;
client-.data : z..windows.caddr.t);

procedure xt.romove-callback-list (w : widget;
callback-.naae : string;
callbacks : zt..callback.list);

procedure zt..reaov*_all.callbacks (w : widget;
callback-.naae : string);

procedure xt~call..callbacks (w : widget;
callback..name : string;
client..data : z...indows.caddr-.t);

function xt..has.callbacks
(w :widget;
callback..nais : string) return xt..callback-.status;

end xt..callbacks;

The procedure type zt-callback-proc is defined in tbe following package specification:

25 January 1990 b 1 A1-t.-UiLA/UU1/1U

4 THE ADAIXT DESIGN 63

pseudo-type xt-.callback-proc is
new proc.typo(thovwidgot : in widget;

cliont.data : zxwindows.caddr-.t;
ca-l.data : xovindows.caddr.T);

4.9 Resource Management

4.9.1 Interface to Resources

A difficult problem arose in specifying the interface to argument lists for several of the re-
source management subprograms. The C model, lacking function overloading, creates lists of
untyped data (lists of many different types stored as a single type). This can be done in Ada
but at the cost of requiring application and widget programmers to do unchecked-conversions
to the list type. A solution is to provide a generic package which provides functions to relieve
programmers of the conversion task.

The generics solution is not problem free. In implementing the generics, we discovered
that some compilers (TeleSoft) do not permit unchecked.conversion of unconstrained types,
and retrieving values of unconstrained types may not be possible. Arrays in Ada (this is
generally true with any unconstrained Ada type) may have additional bytes added to the
array to provide indexing and size information. In retr;eving data the intrinsics do not
know the type of the data, and retrieve data based solely on location and size. The Telesoft
compiler added three words to the front of unconstrained arrays (which are not counted in
the 'length attribute) making it impossible to retrieve the value without making assumptions
about a specific compiler's handling of arrays.

The Ada/Xt implementation imposes the additional restriction: resource types which are
unconstrained types such as arrays, and variant and discriminant records, are not supported.
One unconstrained type, string, is required in Xt, but since the intrinsics know about string
types a test for a resource of type string is made when retrieving a resource value. String

types have separately defined subprograms for setting and retrieving values.
The solution also falls short in retrieving resource values because it requires the user to

use 'address to provide a memory address for storing the retrieved data. This allows the

intrinsics to simply copy data (of an unknown Ada type) from the resource field to a user's

local data space without needing to know about the underlying type. However, this is an

unfortunate use of system-dependent programming, and is in fact a bit "unsafe."
Another approach to building argument lists might be to set resource values individually,

but not have them take effect immediately. A new activate procedure could then initiate the

changes to the actual widget resources. This approach fails because the design of Xt permits

use of the set-values-hook function for setting subpart resource values. Individual setting of

resource values requires changing the interface to the setvalueshook procedure which is not

desirable.
The followng package specifications define the generic interface to these untyped lists,

25 January 1990 Si AKS-KU4) IUUU/UU1/UU

4 THE ADA/XT DESIGN 64

* and subprograms for setting and retrieving-sutring resource values.

package resource-values is
subtype zt..arg..val isx-w.indovs . addr..t;
type zt..arg in

record
name : zt..string;
value : zt-.arg-.val;

end record;
type arg-.list is array (natural range <>) of zt..arg;
type arg-.lint..ptr is access arg-list;

type zt..convert.arg is
record

address..mode : xt-.address..uode;
address-.id : z..vindovs.caddr.t;
size :cardinal;

and record;
type zt..convert..arg..list is array (natural range <>) of zt..convert..arg;

type irauvalue is
record

size :z...indows.z..intoger;
address : x-windows.caddr..t;

end record;
type xrm.value..ptr is access xrm-yalue;
type xrm-..alue-ptr..list is array (natural range <>) of xru...alue..Ptr;

procedure xt-.set..arg (arg : in out zt..arg;
name :in string;
value :in system-address);

procedure zt-set..arg (arg :in out zt..arg;
name :in string;
value :in string);

function set..convert..arg(mode :in zt..address-m.ode;
size :in cardinal;
res :in system.address)

return xt..convert-K.rg;

function set..zrm-.value~size : cardinal;
res :system.address) return xrm-.value;

function xt...uirge.arg.lists (argsl, args2 :arg..list) return arg..list;

generic
type resource-typo is private;
resourcesize :in out cardinal;

package resource-interface is
procedure xt-.set.arg(arg :in out st..arg;

name :in string;
res :in resource-type);

25 January 1990 STARS-KC-Um IJUU/U/

4 THE ADAIXT DESIGN 65

function set.convertarg(mode : xt.address-modo;
rot : resource.type)

return xt.convert.arg;

function set.convert.arg (position : in integer;
roe : resource-type)

return xt.convert.arg;

function init.xrm.resource(name : in string;
class : in string;
rtype : in string;
size : in cardinal;
offset : in cardinal;
dtype : in string;
daddr : in resouzco.type)

return zr.resourc.ptr;

end resourcointerface;
end rosourcevalues;

4.9.2 Representation of Resource Lists

Another major difference of the C and Ada specifications in resource management is the
representation of resource lists. In C resource lists are initially represented as XtReaource
with string values for the various resource names. This is, in part, due to C's inability to
execute conversion functions during aggregate array initialization. Ada can do the conversion
to XrmResource during aggregate initialization. Furthermore, C does an in place conversion
of the resource list in the widget class data structure which violates Ada's strong typing.
As a result, the Ada specification defines resource lists to be of type zrmn.reource-iut in the
widget class structure and provides conversion functions to create the proper lists. Several
conversion functions are provided to allow conversion to the ztiresource type.

type xt-resource is
record

resource.name : xt.string;
rosource.class : zt.string;
resource-type : xt.string;
resource-size, resourceoffset : cardinal;
default.type : zt-string;
default-address : x-windows .caddr-t;

end record;

type xt.rosourco.ptr is access xt-resource;

type xrmrosourco is
record

rosourco-namo : x.windows .xrm-name;

resource-class : zxwindows.xrmclass;

25 January 1990 STARS-RC4) 1000/001/00

4 THE ADA/XT DESIGN 66

resource-type : x.windows.z rm.quark;
rosourcosizo. rosourco.of set : cardinal;
default.type : z_windows.zrmquark;
default-address : x.windows.caddr.t;

end record;
type zru..rosource-ptr is access zrm-resource;

type zt-.rosource.list is array (natural range <>) of zt.resource;
type zt.rsource.list-.ptr is access zt.resourco_list;

type xrn-resource.list is
array (natural range <>) of xru.robource.ptr;

type zro.resourcelist.ptr is access zrm.resource.list;

function create.zraoesource (resource : t.resource)
return zru..resource;

function create.ra.resource-list
(rlist : zt.resource.list) return xr..resource.list.ptr;

function create.zt.resource.list
(rlist : xra.resource.list) return zt.resource.list.ptr;

function creatextresource
(resource : xzrm resource) return zt.resource;

function zt.database
(the.display : z.windows.display) return zra-database;

procedure zt_geot.resource.list
(class : widget-class;
resources-return : out zt.osource.list.ptr);

procedure zr.gotrosourcolist
(class : widget.class;
resources-return : out zrm.resource.list.ptr);

4.9.3 Resource Management Package Specification

The package specification zt-reeourcemanagement defines the remaining resource manage-
ment subprograms. These coincide with the definitions in chapter 9 of [3] except for the

use of zrm.resource lists instead of zt-resource-lists. The procedure zt-get-resource-list is

overloaded to supply either the list in "quarked" form or in string form.

package xt.resource.managenent is

type zt-address.mode is
(it-address,
xt-baseoo.f set,
xt-immediate,
xtresourcstring,

25 January 1990 STAK.S-KC-uIUU/uu i/u

4 THE ADA /XT DESIGN 67

zt..resource..quark);

type xt..convort..arg is
record

address-n.ode : zt-.address-m.ode;
addresu-id : z..windows.caddr.;
size : cardinal;

end record;

procedure zt-.gt.subresourcos (w : widget;
base : z-.windows.caddr.t;
name : string;
class : string;
resources : Zrm-.rosource-.list;
args : arg-list);

procedure zt-get..application..zesources (v : widget;
bass : z..windows.eaddr.t;
resources : xrm.resourc.list;
erg. : arg.list);

procedure zt-string.conversion.warting (src. dst-type : string);

procedure zt-.app.add-.conerter
Capp..contezt : application-.context;
from..type. totype : string;
converter : xt..converter..proc;
converter..args : zt..convert..arg..list);

procedure zt..convert (w : widget;
from..type string;
from : Zra..value..ptr;
to-type : string;
to : out mrm..valu...ptr);

procedure xt-.direct.convert (converter :zt-converter.proc;
args : zrm..value-.ptr-.list;
from : ru..value-.ptr;
to-.return :out zrm..valuo-ptr);

procedure xt..get-.valuos (w : widget;
args :arg..list);

procedure xt-.get..subvalues (base : ..windows.caddr..t;
resources : rm.rosource.list;
args : arg-.list);

procedure xt-.set.valuos (w : in out widget;
args : arg..list);

procedure xt..set-.subvalues (base : x-windows-eaddrt;
resources : xrm..resource..list;

25 January 1990 STARS-RC-IUUU/UUI/UU

4 THE ADA/XT DESIGN 68

args : arg.list);

end xt..esourco..anagoment;

The following procedures types are defined for resource management:

pseudo.type zt.args.proc is
now proc..typ.Cthovidget in out widget;

the.arglist : arg.list);

pseudo.type xt.so-.value.func is
new proc..typo(current..widgot : in widget;

roquest..widget : in widget;
now.widget : in widget)

return boolean;

pseudo-type xt.almost.proc is
new proc_.type(the.widget : in out widget;

nowwidgo.t.return : out widget;
request, reply : in out zt..widget..goometry);

pseudo-type zt._argsufunc is
now proc.type(thewidget : in widget;

thoarglist : arglist) return boolean;

pseudo-type xt..resource.default..proc is
new proc.-type(the.widget : in out widget;

offset : in cardinal;
value : in out zrzm.valuo);

pseudo-type x.tconvertorproc is
new proc.type(args : in xr.valu.list;

from : in zrmvalue;
to : out xrm.value);

4.10 Translation Management

The translation management subprograms and data types are specified in the following
package and retain the same semantics as specified in chapter 10 of [3].

package xt-translaionmanagement is
type xt..translations is implemontationdefined;
type xt.accolorators is implementation-defined;

type zt.action.rec is
record

actionname : xt..string;
action.proc : xt-action.proc;

end record;
type xt._action-list is array (natural range <>) of xtaction-rec;
type x.t.actionlist.ptr is access xt._actionlist;

25 January 1990 A IAb---KU1UA/uiL/P

4 THE ADA/XT DESIGN 69

procedure zt-.app..add-.actions (app..context : - ppli cation_ context;
actions : zt..action..list);

function zt..parse..translation-.tablo
(table : string) return it-.translations;

procedure zt...augment.translations (w : widget;
tranislations : zt..tranlations);

procedure mt-.ovrride.translations (w : widget;
translations : xt..tranhlations);

procedure uninstall-.translations (w : widget);

function zt..parse..accelorator..table
(table : string) return zt-accelerators;

procedure zt..install..accolorators (destination. source : widget);

proceduzx t.inatall-.all.accolerators (destination. source :widget);

procedure zt-.set-key-.tranalator (the-display : z..windows.display;
proc :zt..koy.proc);

procedure xt-.tranalate-.koycode
(the-display : z...indows.display;
the-keycode : z-windows.koycode;
some-modifiers : modifiers;
uodifiers-roturn : out modifiers;
keysym-return : out z-.windows.koy..sym);

procedure xt..registor..cas...convorter
(the-display : z.windows.display;
proc : xt..case..proc;
start. stop : z..windovs.koyboard.ky.sym);

procedure xt-con'ert..case
(the-display :z-windows.display;
some-keysym : z..windows.key.sym;
lower-return, upper-return : out z..windows.key-.sym);

end xt..translation..mAnagemont;

The following procedure types are specified for translation management:

pseudo-type xt..action.proc is
new proc-type(the..widget : in out widget;

the-event : in z..windows.z..event;
pareas :in string;
num-pareas : cardinal)

pseudo-type zt-.string..proc is
new proc..type(the..widget :in out widget;

25 January 1990 b I AKb-Kk-U APJ/UJI /UU

4 THE ADA/XT DESIGN 70

O i : zt..string) ;

pseudo.type zt.key.proc
is

new proc.type(th*.display : z.vindows.display;
thekeycode : z.windows.keycode;
some.modifiers : modif irs;
modifiers-return : out modifiers;
koysym.return : out x.windows.key.sym);

pseudo-type xt.caso.proc is
now proc.typo(th-.koysym : in x.indows.key.sym;

lower.return : out xwindows.key.sym;
upperroturn : out xzwindows.koy.sym);

4.11 Utility Functions

Some differences exist in the utility functions due to language differences. For example,
the C function XtNumber is not needed in Ada because Ada provides the 'length array
attribute. The memory management functions may not be used in the same way as in a
C implementation since Ada has new for allocating storage for its pointer types. For types
the intrinsics does not know about (widgets), memory management functions are necessary.
The memory management functions return an implementation defined type which should be
some form of address to the allocated storage. The remaining subprograms provide the same
functionality as defined in chapter 11 of [3].

The following types are assumed to be visible to the utilities package, and could beOdefined in this package:

type ptr is implementation-defined;
type string-list is array (natural range <>) of zt-string;

The following package defines the utility interfaces for Ada/Xt:

package xt.utilitios is

-- translating strings to widget instances:

function xt.name-to.widget (reference : widget;
names : string) return widget;

-- managing memory usage:

function xt..alloc (size : cardinal) return ptr;

function xt.calloc (num, size : cardinal) return ptr;

function xt-realloc (p : ptr;
num : cardinal) return ptr;

25 January 1990 b I AKb-KL-UIUUU/LjI/UU

4 THE ADA /XT DESIGN 71

procedure 2t-f.roo (p : in out ptr);

-- sharing graphics contexts:

function zt..get-.gc (w :widget;
value-mask : zt..gc..uask;
values : x-.windows.x..gc-.values)

return x-.windows.gc;
-- is this list or array?

procedure zt-release-gc (w : widget;
the..g : x-windows.vc);

-- managing selections:

procedure zt..app-sout.sloction-.timeout
(app..context : application-.context;
timout : z..windows.Time);

function zt..app.get..selection.timeout
(app-.context :application-.context) return x-.windows.tiue;

procedure zt-get-.selection-.valuo
(w. widget;
selection. target : x-windows-atom;
callback : zt-.sloction-callback-.proc;
client-.data :z.windows.caddr-t;
timestap : z..windows.timo);

procedure rt..get-.slction..values
(w : widget;

selection : x..windown.atom;
targets : z..windows.atom-.list;
callback : zt..soloction-.callback-.proc;
client-.data : z..windows.caddr-.t;
timostanp : z.windows-time);

function zt-own-selection
C. : widget;
selection : z..windows.atom;
timestamp : z..windows.time;
convort..proc : xt-convert.solection.proc;
lose~selection : t..loso-.selection..proc;
done..proc : xt-selection.done..proc) return boolean;

procedure xt-.disown-soulction~w :widget;
selection : x-.windows atom;
timestamp : x-.windows.time);

-- Merging events into a region

procedure xt..add-exposure..to..region

25 January 1990 1 iA -- UIVUU/VUI/UU

4 THE ADA/XT DESIGN 72

(event : z.windows.event;
region : x.windows.region);

-- translating widget coordinates

procedure xt-translate.coords (w : widget;
z, y : position;
rootxz.rturn : out position;
rooty.return : out position);

-- translating a window to a widget

function xt-window.to.widgot
(the.display : x.indows.display
the-window : zxwindows.window) return widget;

-- handling errors

function zt.appget.error.database
(app.context : application-context) return x-windos.xr.databaso;

procedure xt.app-get.error.database.text
(app.context : application.context;
name, restype, class : string;
default : string;
buffer.return : in out string;
database : x.windows.xru..data'b1ie);

procedure xt.app-set-orrorusg.handler
(appcontext : application.context;
asg-handler : xt.error.msg-handler.proc);

procedure xt-app.error.msg (app.context : application.context;
name, restype, class, default : string;
params : in out string-list);

procedure xt-app-set.arning.asg.handler
(app.context : application.context;
usg.handler : xt*rror.sg.handler-proc);

procedure xt.app.warningmsg (app-context : application-context;
name, restype, class, default : string;
params : in out string-list);

procedure xtappseterror.handler
(app.context application-context;
handler : xt.rror-handler.proc);

procedure xt.app-error (appcontext : application.context;
message : string);

procedure xtappset-arning-handler

25 January 1990 STARS-RC-JUtJu/uo 1/LK)

4 THE ADA/XT DESIG-N 73

(app..contezt : application-context;0 handler : zt...rror-.handler-.proc);

procedure zt..app.warning (app..context : application.contezt;
message : string);

end xt..utilities;

The following procedure types are defined for use by the utilities:

pseudo-type zt..convert-.selection-.proc is
now proc..type~th..widget : widget

selection : z..windows.atom;
target : xwindows.atom;
type-return : xzwindows.atom;
value-return : out z.,windows.caddr.ti
length..return : out cardinal;
format..return : out z.windows.z-intoger)

return booe.an;

pseudo-type zt..lose..uelection..proe is
new proc-.type~the..widget : in out widget;

selection : in out z..windows.atom;
target : in out z...indows.atom);

pseudo-typo xt-selection.callback.proc is
new proc..typo~the-..idget :in out widget;

cliont..data : in z..windows-e.addr.t;
selection : in out z.windows.atom;
gelectioxi~typo : in x..windows.atom;
value : z-.windows.caddr-t;
length : in cardinal);

pseudo-type xt-.error-a.sg.handler..pioc is
new proc..type~resource..namo : string;

resource-type : string;
reuource..class :string;
default..p : string;
params : string-.list);

pseudo-type xt..error.handler.proC is
new proc..type(message :string);

25 January 1990 b I A~b-LL.-UiuIUUU/UUIU

5 APPENDIX A: CASE-STATEMENT PROCEDURE TYPES 74

*~5 Appendix A: Case-Statement Procedure Types
with system; use system;
package body callback-mechanism is

typo callback..mappod..id in
range callback-.idrange'first .. callback-.id-.range'last 0 EUNLCALLBACKS;

unmapped-.id: constant callback.mapped..id: * callback..mapped.idfirst;

callback.id-map :array~callback-.id..rang*) of callback..mappedid:-
(others -> unmapped..id);

starting-.at: callback-s.apped-.id:- callback..mapped..id'first + 1;
next-s.apped-.id: callback-.mapped.id: = starti2ng-.at;

package body cailback-ids is

noxt-id: callback..id-range:u callback..id..range'girst 41;

-- return a unique callback Id
function next..callback-id return callback-id-.range is

i: callback-.id.rango:s next..id;
begin

return i;
exception

when constrainteorror =>
raise C1LLBACK_..ANGE..ERROR;

end next..callback-.id;

-- select the callback id from the callback object
function to..callback..id.rango(id: callback-.id..type)

return callback-.id-rango is
begin

return id.the..callback.id;
end to..callback-.id..range;

end caliback-ids;

-- these procedures should never be called, so raise exception
procedure default-noxt..call-back~id: callback.id..type; s: string) is
begin

raise CALLBACICAILL-ERROR;
end;
procedure default..callback~s: string) is
begin

raise CALLBACK-CILL.ERROR;
end default .callback;

25 January 1990 I A -AJ-uiiIU 'J

5 APPENDIX A: CASE-STATEMENT PROCEDURE TYPES 75

package body callbacks is
-- each instantiation of callbacks has a distinct id range
l.range, high.range: callback.-apped.id:s callback-mapped-id' last;

procedure callback (id : callback.idtype; s: string) is
-- subtype assignment allows use of case statement
subtype callback.range is callback.mapped.id range 1 .. IUMCALLBACKS;
mapped.id: callback.mappedid:-

callback.id.map(to.callback.id.range(id));
index: callback.range;

begin
if apped.id in low-range .. high-range then

index:- napped.id - low.range + 1;
case index is

when 1 => cbl(s); -- call the actual callback
when 2 *) cb2(s);
when 3 *) cbS(s);

end case;
else -- in the range of a previous instantiation

next.callback(id, s);
end if;

end callback;

begin -- initialize
low.range:- starting.at;
high.range:u low.range + NM.CALLBACKS - 1;
starting.at:- high.range + 1;

-- do this if .. then code for each formal callback
if cbladdress /a default.callback'address then

if idl /a null-id then
if callback-id-map(to.callback.id-range(id1)) /" unmapped-id then

raise CALLBICK.INSTLL.E.ROR; -- valid procedure, duplicate id
else

callback.id.map(to.callback.id-range(idl)):a next.mappod-id;
end if;

else
raise CILLBACK.IISTALL.ERROR; -- valid procedure, null id

end if;
end if;
next.mapped.id:- next.mappedid + 1;

if cb2'address /a default.callback'address then
if id2 /a null.id then

if callback-id-ap(tocallback-id-range(id
2)) /a unmapped-id then

raise CALLBACK.INSTALL.EUOR; -- valid procedure, duplicate id

else
callback-id.uap(to-callback-id-range(id

2)):" next-mapped-id;
end if;

else
raise CALLBACKINSTALLERROR; -- valid procedure, null id

end if;

25 January 1990 N I AKb-KL-UIUuu/uuWIuu

5 APPENDIX A: CASE-STATEMENT PROCEDURE TYPES 76

end it;
aext-siapped..id:u next-.iapped..id + 1;

it cb3'addross /- default-.callback'addross then
it id3 /- null..id then

it callback-.id..uap~to.callback.id-.range~id3)) /a unmapped.id then
raise CALLBICK.ISTALL-.ROt; -- valid procedure, duplicate id

else
callback..id-ap(to-.callback-.id-range~id3)) : nezt..uapped.id;

end it;
else

raise CILLBACK.INSTALL-.ERROR; -- valid procedure, null id
end if;

end it;
noxt...appod..id:n next...apped-.id + 1;

end callbacks;

end callback-.mechanism;

2: January iyu iJr1o- ukuAu/uA~kuu

6 APPENDIX B: SYSTEM-DEPENDENT PROCEDURE TYPES 77

6 Appendix B: System-Dependent Procedure Types
package body xt.procedure-types is

package body xt.widgetclassprocs is

-- private data and functions

bad.procedure.reference : exception;

xt-inherit.constantrecord : xt-widget-class-proc.rep;
xt.inherit-constant : xt-widget.class-proc;

-- arg.record is a record encapsulation for arguments to ada
-- functions. Encapsulating as a record permits us to write
-- exactly one foreign language dispatcher, which will call
-- an intermediary Ada subprogram by pointer which will in turn

call the Ada subprogram of an arbitrary parameter profile.

type arg-record is record
the.widget-class : widget.class;
-- other parameters to the call function go here...

end record;
type arg.record.pointer is access arg.record;

arg-record-buffer : arg-record; -- global arg-record for use as
-- argument passing vehicle. Could
-- also make local to procedure call.
-- but then would be on stack. Is
-- that better or worse?

procedure default.xt.widget.class.proc(the.widget.class : widgetclass) is
begin

raise bad.procedurereference;
end;

-- type converters for converting to/from system.address

function address.to.argrecord.pointer is
new unchecked-conversion(

source a> system.address, target => argrecord-pointer);

function xt-widget-class-procto.address is
new unchecked-conversion(

source a> xt.widgetclass.proc.
target a> system.address);

-- visible functions

function xt-inherit.widget.class-proc return xt.widget.class.proc is

begin

0

25 January 1990 ~IA~K~UtRIAitA

6 APPENDIX B: SYSTEM-DEPENDENT PROCEDURE TYPES 78

return xt..inherit -constant;
end;

procedure call(
the-.proc..id : xt -widget_ clasa..proc; the-.widget..class :widget.class) is

begin

-- construct the argument passing buffeor
arg..record-.buff or .th...widget-.class := the...idget..class;

-- call the C or assembler or ... routine which calls the function
dispat ch..interf aces. call..ada(

zt..-widget -class -proc..to..addxes(th..proc.id),
arg-.record.bufforladdress);

end;

package body procedure..pointer is

-procedure intermediary-.caller is the actual subprogram which
-invokes the user supplied function. The address of intermediary..caller
-is put into the id returned by the instantiation.

procedure intermediaxy.,caller(
-- the..proc-.id : t-.widget-.class..proc;
arg..record-.address :system.address) is

an-.arg-.rcord.pointer : arg-.record-.pointer :a
address..to..arg-record-.pointer(arg..rocord..addre55);

begin
-- ,1"the-proc" is the generic procedure
th -.prc(an.arg.rcord.pointr.the..idget-class);

end;

begin
-Vads version does not need to save context information
-for intermediary-.caller

declare
tern xt..widget-.class..proc..rep : t..widgot..class..proc..rep;

begin
dispatch..interfaces .saveenviroIment..contelt C

temp-.xt..uidget.class-.proc-.rop' address);
teinp-.xt..idgetclassproc.rep.proc-addross

intermediary-.caller 'address;
proc-.id :a

new xt...idget..class.pro..rep' Ctomp..xt..widgetclass-.proc-rep);
end;

end procedure..pointer;

begin
xt..inberit-.constant.rcord.proc-address :

xt.izihorit..widget..class..proc' address;

25 January 1990 Ar-r-Ai u/u'J

6 APPENDIX B: SYSTEM-DEPENDENT PROCEDURE TYPES 79

new xt .widget -class -proc.rep' (xv7inherit..constantrecord);
end xt -widget -class -procs;

-- other procedure type packages...

end zt.procoduretypes;

with system; use system;
package dispatch-interfaces is

-- Dispatchinterfaces provides the entries for assembler or C or ...
-- code which saves subrogram environment data and invokes Ada subprograms
-- via their address.

procedure call-ada(
the.proc.descriptor : system.address;
the.arg.descriptor : system.address);

pragma interface (C, call.ada);

procedure savo.onvironment.cont et(the-procdescriptor : system.address);

pragma interface (C, save.nvironment-context);

end dispatch.interfaces;

/ the C code for VADS. TolSoft, and Tartan, which invokes the subprograms
via their addresses C/

typedef void (*Proc)();
typedef struct .procdoscriptor {

Proc p;/*
ALSYS data fields
int gd;
int tcb;
int profile;*/

I ProcDescriptorRec, *ProcDescriptor;

void call-ada(pd, arg)
ProcDescriptor pd;
char *arg;

/* Alsys version of call-ada is assembler which restores subprogram
environment context, and passes the argument via the data register dO.

For VADS, etc., the call stack is used to pass arguments, and
a simple JSR will suffice. ./

Carg);

oI

25 January 1990

6 APPENDIX B: SYSTEM-DEPENDENT PROCEDURE TYPES 80

void sav.onvircuonnt-contextCpd)
ProcDescriptor pd;

/I null body for VADS, Tol*Soft, and Tartan. s/

0

0

Z) January 19U k i K- U A.AJIA /I.Aj

7 APPENDIX C: SIMPLE WIDGET DEFINITION 81

* 7 Appendix C: Simple Widget Definition

Simple Widget: Public Pseudo-Type
with intrinsics; use intrinsics;
with core-public; use corejpublic;
pragma elaborate(intrinsics);
package simple.public is

-- 1) resources documentation:

-- lame Class RepType Default Value
--- --

-- background Background Pixel XtDefaultBackground
-- border BordorColor Pixel ltDofaultForeground
-- borderVidth BorderWidth Dimension 1
-- cursor Cursor Cursor None
-- destroyCallback Callback Pointer NULL
-- height Height Dimension 0
-- insensitiveBorder Insensitive Pizmap Gray
-- mappedhenlanaged NappedWhenManaged Boolean True
-- sensitive Sensitive Boolean True
-- width Width Dimension 0
-- z Position Position 0
-- y Position Position 0

-- 2) define constants for new resources. Can we use enumeration and 'image?

xt .n.cursor : constant string :* "cursor";
xt_C.cursor : constant string :" "Cursor";
zxtn-insensitive.border : constant string : "'insensitive-border";
zt.c.insonsitiveborder : constant string :- "Insensitive";

-- 3) define application interface to types and constants for intrisics use:

subtype simple.widget is core-widget;
subtype simple-class is core.class;

function thesimple-class return simple-class;

-- 3a) define application type conversion operations

-- 4) define public entries to simplewvidget operations:

procedure foo(w : simpleowidget); -- demonstration only

-- NONE

end simpleopublic;

2.' January 199U b I AK"-K...-uUI~UWUUI/LA

7 APPENDIX C: SIMPLE WIDGET DEFINITION 82

* Simple Widget: Private Actual-Type
with intrinsics; use intrinsics;
with renamod..lib..types; use renaaed...lib-.types;
with x-windows;
with system;
with compiler-.dependent;
with unchck~d-.convers ion;

-- superclass context
with core-private; use core-private;

package siaplo-private is

use xt-.ancillary..typos;
use xt..procodur...types .xt.relize..procs;
use zt..goomotry,.management;
use zt..rosource-managoment;
use zt-transation-.managemont;

simple..part..rec-size : constant cardinal :a 64;
type simple..part..rec is record

the-cursor : z..window . cursors. cursor;
ins ensitive-border : x-windows .pizinap;

end record;

simple..widget..size :constant cardinal :
core..part..uize + simple-part.rec-.size;

type siuiple..widget..rec in record
core-part : core..private.core..part;
siaple-part :simple..part..rec;

end record;

for simplo-.widget-.rec use record at mod 2; -- alsys requires "2"
coroepart
at 0
range 0 .. coro-.part-.size - 1;
simple-part
&t 0
range core-.part-.size .. core..Part..size + simple..part-.rsc..sizs 1;

end record;

type simple..part..pointer is access simple..part-.roc;
type simple...idget..pointer is access simple-widget-rec;

simple-class.part.re..size constant cardinal :- 32;
typo simple..class-part-.rec is record

is..change..sonsitive :zt-.realize..proc;
end record;

type simple.class-.part is record

23 January i99u A 01U~NJa'A%-UV/AJA/A

7 APPENDIX C: SIMPLE WIDGET DEFINITION 83

core-clahsspart : core-private. cbre.class..part;
0 iuple..claurn.-part : a imple.class.-part..rec;

end record;

for uimple..clahu..part us. record at mod 2;
core-class-.part
at 0
range 0 .. core-.clas..part..sizo - 1;
simple..class..part
at 0
range caoe.class-part-size

core-.clahu..part..hize + siplclass-part.rec..size - 1;
end record;

type hiuiple-class.part-.pointer is access simple..class..part..rec;
type simple-.clasu..pointor is access simple..class..part;

-allocate the class constant

function to-widget..class is now unchecked-conversion(
source W> simple..class..pointer.
target => widget-.clans).

the-siapleclass : constant widget-.class :
to...idget..class (new simplo-.class-.part);

end simple-private;

23 January iy'yu h

7 APPENDIX C: SIMPLE WDGET DEFINITION 84

Simple Widget: Public Pseudo-Type Implementation
-- superclass context
with core-public; use core..public;
with simpl*-.privato; us* simple..private;

with z..windows; use z..windows;
with unchecked-.conversion;
with system;
with zenamed..zlib-.types; use renamed..zlib..types;
with compiler-.dependent;
with tezt..io;

pragma. elaborate (simple-.private);
pragma. elaborate (core..public);
pragma elaborate (compiler-.dependent);

pragma. elaborate (text-ic);

package body simple-public is

use zt-.ancillary.types;
use Zt..procedure-.types zt-.widgt.class-procs;
use resource-manager;

-type conversion operations:
function to..simple-.class is new unchecked..conversion(

source => siaple-.class..pointer,
target -> simpleclass);

function to..simple.widget..pointer is new unchecked..conversionC
source -> siuiple..widgot.
target => simple..widget-.pointer);

function to..simple..class.pointer is now unchecked-.convorgionC
source => widget..class,
target a> simple..class..pointer);

-- global objects:
init.proc : xt..widget..class-.proc;
simple.class-.constant : constant simple..class..pointer :

to..simple-.class-.pointor (uimple-private .the...imple-.class);

-procedures for the class structure:
procedure simple..lass.part.initializ*(.c : widget-class) is
begin

toxtio.put.line(",simple class class part initialization");
end;

-visibile operations:

L.) J4itluaiy 1:;'U)LA A . UJ1jLI JJ

7 APPENDIX C: SIMPLE WIDGET DEFINITION 85

function the..simple..class return uiimple-class is
begin

return simplo-.class (simple..private. the..uimple- class);
end;

procedure foo(w : simpleuwidget) is

begi h imple..widget-.pointer :- to-s impl..widget.-pointer (w);

app. core-part .managed :a xt-.ancillary.types .xt-true;
end;

begin

declare
-- procedure Instantiations:
package init-.procs is new procedure-pointez(
proc-.id => init-.proc.
the-proc w> simple-class.part..initialize)

begin

simple..clasu-constant.all : (
core..class..part a>C

superclass => core..public the-.core..class,
class-.name a> null,
widget-size => simple-widget-s.ize.
class-initialize a> null.
class..part.initialize => init..proc. - non-defaulted
class-inited => xt..falso,
initialize => null.
initialize..hook => null.
realize U> null,
actions => null.
rebources-> null,
the..zrm..class=> xrm-.class'first,
compress-.motion =) xt-false,
compross.exposure a> zt~false,
compres.interleave => xt-falso,
visible-interost => xt..true,
destroy => null,
resize => null,
expose => null,
sot-values => null,
sot-values..hook => null,
sot..values..almost *> null,
get-values-.hook => null,
accept..focus a> null, -- this should be *-.func
version a> zt-version..typelfirst,
callback-.private => null,
tm-table -> null,
quory-goometry a> null, -- should be *-func

25 January 1990 S'1'AKS-KC-U IUUU/UUI/UU

7 APPENDIX C: SIMPLE WIDGET DEFINITION 86

display-.accelerator => nun1-,
extension => caddr .t~compilez..dependent.null-.address))

uizpl..clas..pazt U> ?
iu-chang..sonsitive null))

end;
end himplo-public;

25 January 1990 SI 1AK-Ki-U1UUU/U)/UU

REFERENCES 87

* References
[1] Adele Goldberg and David Robson. Srnalltalk-80 The Language and Its Implementation.

Addison-Wesley, 1983.

[2] Hewlett-Packard. Programming with the xrlib user interface toolbox, 1988.

[3] Joel McCormack, Paul Asente, and Ralph R. Swick. X toolkit intrinsics - c language x
interface, 1989. X Version 11, Release 3.

[4] National Institute of Standards and Technology. The user interface component of the
applications portability profile, 1989. Draft FIPS.

[5] Andrew J. Palay, Fred Hansen, Mike Kzar, Mark Sherman, Maria Wadlow, Thomas
Neuendorffer, Zalman Stern, Miles Bader, and Thorn Peter. The andrew toolkit - an
overview. In Proceedings USENIX Technical Conference, Winter 1988.

[6] Robert W. Scheifler and Jim Gettys. The x window system. ACM 7-ansactions on
Graphics, 5:79-109, April 1986.

[7] Bjarne Stroustrup. The C++ Programming Language. Addison-Wesley, 1986.

[8] Kurt C. Wallnay and Robert Smith. Ada interfaces to x window system: Analysis
and recommendations. Technical Report SDRL Q14-02021-D, STARS Technical Report,
April 1989.

